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MULTIVARIATE DATA ANALYSIS

• BERISI:

KONSEP DASAR METODE STATISTIK

DEFINISI STATISTIK

METODE KORELASI

METODE EKSPERIMENTAL

METODE KUASI EKSPERIMENTAL

SKALA PENGUKURAN

KEGUNAAN STATISTIK

GENERAL LINIER MODEL

PEMBAGIAN METODE ANALISIS MULTIVARIAT

KLASIFIKASI ANALISIS MULTIVARIAT

METODE DEPENDENSI
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ISI

PERSAMAAN DAN PERBEDAAN ANALISIS VARIAN

METODE INTERDEPENDENSI

BASIC OF MULTIPLE REGRESSION

UJI NORMALITAS

MODEL PERSAMAAN STRUKTURAL

PARTIAL LEAST SQUARE
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DEFINISI STATISTIK

• MENURUT GRAVETTER, ( 2002, P3-19 ),

“ THE TERM STATISTICS REFER TO A SET OF METHODS AND RULES FOR

ORGANIZING, SUMMARIZING AND INTERPRETATING INFORMATION”.

A POPULATION IS THE SET OF ALL INDIVIDUALS OF INTEREST FOR

PARTICULAR STUDY.

A PARAMETER IS A VALUE, USUALLY A NUMERICAL VALUE, THAT DESCRIBES

A POPULATION. A PARAMETER MAY BE OBTAINED FROM SINGLE

MEASUREMENT, OR IT MAY BE DERIVED FROM A SET MEASUREMENTS

FROM THE POPULATION.
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POPULASI SUMBER ( SAMPLING FRAME)
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DEFINISI ( LANJUTAN)

• A DATA SET IS A COLLECTION OF MEASUREMENT OR OBSERVATIONS.

• A DATUM (SINGULAR) IS A SINGLE MEASUREMENT OR OBSERVATION

AND IS COMMENLY CALLED A SCORE OR RAW SCORE.

• DESCRIPTIVE STATISTICS ARE STATISTICAL PROCEDURES THAT ARE

USED TO SUMMERIZE, ORGANIZE AND SIMPLIFY DATA.

• INFERENTIAL STATISTICS CONSIST OF TECHNIQUES THAT ALLOW US

TO STUDY SAMPLES AND THAN MAKE GENERALIZATION ABOUT

THE POPULATIONS FROM WHICH THEY WERE SELECTED.
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DEFINISI (LANJUTAN)

• SAMPLING ERROR IS DISCREPANCY, OR AMOUNT OF ERROR, THAT

EXISTS BETWEEN A SAMPLE STATISTIC AND CORRESPONDING

POPULATION PARAMETER.

• THE MARGIN ERROR IS THE SAMPLING ERROR. A STATISTIC ALWAYS

HAS SOME MARGIN ERROR, WHICH IS DEFINED AS SAMPLING ERROR.
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THE CORRELATIONAL METHOD
• THE SIMPLEST WAY TO LOOK FOR RELATIONSHIPS BETWEEN VARIABLES IS TO

MAKE OBSERVATIONS OF THE TWO VARIABLES AS THEY EXIST NATURALLY

FOR A SET OF INDIVIDUALS. THIS CALLED THE CORRELATIONAL METHOD.

• ASSESSES THE LINEAR RELATIONSHIP BETWEEN TWO VARIABLES

• EXAMPLE: HEIGHT AND WEIGHT

• STRENGTH OF THE ASSOCIATION IS DESCRIBED BY A CORRELATION 
COEFFICIENT- R

• R =  0 - .2 LOW, PROBABLY MEANINGLESS

• R = .2 - .4 LOW, POSSIBLE IMPORTANCE

• R = .4 - .6 MODERATE CORRELATION

• R = .6 - .8 HIGH CORRELATION

• R = .8 - 1 VERY HIGH CORRELATION

• CAN BE POSITIVE OR NEGATIVE

• PEARSON’S, SPEARMAN CORRELATION COEFFICIENT 
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THE EXPERIMENTAL METHOD

• IN THE EXPERIMENTAL METHOD, ONE VARIABLE IS MANIPULATED

WHILE ANOTHER VARIABLE IS OBSERVED AND MEASURED. TO

ESTABLISH A CAUSE AND –EFFECT RELATIONSHIP BETWEEN THE TWO

VARIABLE, AN EXPERIMENT ATTEMPS TO ELIMINATE OR MINIMIZE

THE EFFECT OF ALL OTHER VARIABLES BY USING RANDOM

ASSIGNMENT AND BY CONTROLLING OR HOLDING CONSTANT

OTHER VARIABLES THAT MIGHT INFLUENCE THE RESULTS.
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THE QUASI-EXPERIMENTAL METHOD

• INSTEAD OF USING AN INDEPENDENT VARIABLE TO CREATE

TREATMENT CONDITIONS, A QUASI-EXPERIMENTAL RESEARCH STUDY

USES A NONMANIPULATED VARIABLE TO DEFINE THE CONDITION

THAT ARE BEING COMPARED.

• THE NONMANIPULATED VARIABLE IS USUALLY A SUBJECT VARIABLES

(SUCH AS MALE VERSUS FEMALE) OR A TIME VARIABLE (SUCH AS

BEFORE TREATMENT VERSUS AFTER TREATMENT). THE

NONMANIPULATED VARIABLES THAT DEFINES THE CONDITIONS IS

CALLED A QUASI-INDEPENDENT VARIABLE.
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SCALES OF MEASUREMENT

• 1. A NOMINAL SCALE: CONSISTS OF A SET OF CATEGORIES THAT

HAVE DIFFERENT NAMES. MEASUREMENT ON A NOMINAL SCALE LABEL

AND CATEGORIZE OBSERVATIONS BUT DO NOT MAKE ANY

QUANTITATIVE DISTINCTIONS BETWEEN OBSERVATIONS.

• 2. AN ORDINAL SCALE: CONSISTS OF SET OF CATEGORIES THAT ARE

ORGANIZED IN A ORDERED SEQUENCE. MEASUREMENTS ON AN

ORDINAL SCALE RANK OBSERVATION IN TERM OF SIZE OR

MAGNITUDE.
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SCALES

• 3. AN INTERVAL SCALE: CONSISTS OF ORDERED CATEGORIES WHERE

ALL OF CATEGORIES ARE INTERVALS OF EXACTLY THE SAME SIZE. IN

AN INTERVAL SCALE, EQUAL DIFFERENCES BETWEEN NUMBERS ON THE

SCALE REFLECT EQUAL DIFFERENCES IN MAGNITUDES. HOWEVER,

RATIOS OF MAGNITUDES ARE NOT MEANINGFUL.

• 4. A RATIO SCALE: IS AN INTERVAL SCALE WITH THE ADDITIONAL

FEATURE OF AN ABSOLUTE ZERO POINT. IN A RATIO SCALE, RATIONS

OF NUMBERS REFLECT RATIOS OF MAGNITUDE.
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GENERAL LINEAR MODEL

• MULTIVARIATE

APLIKASI MULTIVARIATE

ANALISIS DENGAN SPSS DAPAT 

DILAKUKAN PADA ANALISIS, 

GLM/ GENERAL LINEAR MODEL.
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PEMBAGIAN METODE PADA ANALISIS 
MULTIVARIATE

• ANALISIS MULTIVARIAT.

ANALISIS MULTIVARIAT ADALAH ANALISIS YANG MELIBATKAN BANYAK VARIBEL (LEBIH DARI DUA)

(SUPRANTO, 2004,HAL.20).

PEMBAGIAN METODE PADA ANALISIS MULTIVARIATE MELIPUTI:

• (1). METODE DEPENDEN YAITU MEMILIKI VARIABEL YANG

MEMPENGARUHI (X) DAN ADA VARIABEL YANG DIPENGARUHI.

TERDIRI DARI ; REGRESI LINEAR BERGANDA KLASTER, ANOVA,

DESKRIMINAN, LOGISTIK DAN KONJOIN. ANALISIS DEPENDENSI

BERTUJUAN UNTUK MENJELASKAN ATAU MERAMALKAN NILAI

VARIABEL TAK BEBAS BERDASARKAN LEBIH DARI SATU VARIABEL

BEBAS YANG MEMPENGARUHINYA. (X1, X2, X3...XK, DAN Y).
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PEMBAGIAN METODE PADA ANALISIS 
MULTIVARIATE MELIPUTI

 (2). METODE INTERDEPENDENSI/ SALING KETERGANTUNGAN YAITU

SEMUA VARIABEL SAMA DERAJATNYA, TIDAK ADA YANG

MEMPENGARUHI DAN TIDAK ADA YANG DIPENGARUHI.

 TERDIRI DARI; ANALISIS FAKTOR. ANALISIS INTERDEPENDENSI

BERTUJUAN UNTUK MEMBERIKAN ARTI KEPADA SUATU SET

VARIABEL (KELOMPOK VARIABEL) ATAU MENGELOMPOKAN SUATU

SET VARIABEL MENJADI KELOMPOK YANG LEBIH SEDIKIT JUMLAHNYA.
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KLASIFIKASI ANALISIS MULTIVARIAT

•KLASIFIKASI ANALISIS

MULTIVARIAT MENURUT

SUPRANTO (2004, HAL.19)

ADALAH SEBAGAI BERIKUT:
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METODE DEPEDENSI

• SATU VARIABEL TAK BEBAS: ANOVA DAN

ANCOVA, REGRESI BEGANDA, ANALISIS

DISKRIMINAN, ANALISIS KONJOIN.

• LEBIH DARI SATU VARIABEL TAK BEBAS:

MANOVA DAN MANCOVA, KORELASI

KANONIKAL
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PERSAMAAN DAN PERBEDAAN ANTARA 
ANALISIS VARIAN

Persamaan ANOVA REGRESI LINIER DISKRIMINAN

BANYAKNYA 

VARIABEL DEPENDEN 

(Y)

SATU SATU SATU

BANYAKNYA 

VARIABEL 

INDEPENDEN (X)

>1 >1 >1

SIFAT VARIABEL 

DEPENDEN (Y)

NUMERIK NUMERIK KATEGORIK

SIFAT VARIABEL 

INDEPENDEN (X)

KATEGORIK NUMERIK, dummy 

(kategorikal)

NUMERIK
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REGRESI LINEAR BERGANDA & LOGISTIK
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METODE INTERDEPEDENSI

FOKUS PADA VARIABEL: 

• ANALISIS FAKTOR

FOKUS PADA OBJEK:

• ANALISIS KLASTER, PENSKALAAN MULTIDIMENSI
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BASICS OF MULTIPLE REGRESSION
MULTIPLE REGRESSION EXAMINES THE RELATIONSHIP BETWEEN ONE

INTERVAL/RATIO LEVEL VARIABLE AND TWO OR MORE INTERVAL/RATIO

(OR DICHOTOMOUS) VARIABLES

• AS IN SIMPLE REGRESSION, THE DEPENDENT (OR CRITERION) VARIABLE

IS Y AND THE OTHER VARIABLES ARE THE INDEPENDENT (OR PREDICTOR)

VARIABLES XI

• THE INTENT OF THE REGRESSION MODEL IS TO FIND A LINEAR

COMBINATION OF X’S THAT BEST CORRELATE WITH Y

• THE MODEL IS EXPRESSED AS:

Y = 0 + 1XI + 2X2 … + NXN + I
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ANALISIS MULTIVARIATE 

UNTUK MENYELIDIKI HUBUNGAN YANG LEBIH KOMPLEKS ANTARA SEJUMLAH

VARIABEL YANG BERBEDA, KITA MENGGUNAKAN PERPANJANGAN ALAMI

DARI REGRESI LINEAR SEDERHANA, DIKENAL SEBAGAI ANALISIS REGRESI

BERGANDA. (PAGANO1993)

• SAMA SEPERTI KITA HARUS MEMBUAT BEBERAPA ASUMSI SEBELUM FITTING

MODEL REGRESI YANG HANYA MELIBATKAN SATU VARIABEL PENJELAS, KITA

HARUS MEMBUAT SATU SET ASUMSI-ASUMSI MODEL REGRESI ANALOG

SEBELUM MENILAI TINGKAT KECOCOCKAN MODEL MULTIPLE YANG LEBIH

KOMPLEKS.
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ASUMSI

ASUMSI INI ADALAH SEBAGAI BERIKUT: 

• 1. UNTUK NILAI-NILAI TERTENTU X1, X2, ... ... ... ... DAN XQ DIANGGAP DIUKUR 

TANPA KESALAHAN,

Y HASILNYA ADALAH TERDISTRIBUSI NORMAL DENGAN MEAN  DAN DEVIASI 

STANDRT.

• 2. HUBUNGAN ANTARA  DAN X1, X2 ... DAN XQ DIWAKILI OLEH PERSAMAAN 

• 3. UNTUK SETIAP SET TERTENTU DARI NILAI-NILAI X1, X2 DST ADALAH 

KONSTAN.

• 4 HASIL NILAI Y ADALAH BERSIFAT INDEPENDEN .
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THE LEAST SQUARES REGRESSION 
EQUATION

REGRESI PERSAMAAN KUADRAT TERKECIL PERSAMAAN REGRESI

• UNTUK MEMPERKIRAKAN POPULASI .KAMI MENGGUNAKAN METODE

KUADRAT TERKECIL AGAR SESUAI MODEL ..

• TEKNIK INI MENSYARATKAN BAHWA KITA MEMINIMALKAN JUMLAH

KUADRAT RESIDU, ATAU, DALAM HAL INI, KETIKA SEBUAH VARIABEL

PENJELAS UNTUK TERLIBAT, MODEL YANG MEMILIKI TINGKAT KETEPATAN/

KECOCOKAN BERUPA SUATU GARIS LURUS SEDERHANA /THE FITTED MODEL

WAS SIMPLY A STRAIGHT LINE.

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 25



VARIABEL PENJELAS DISKRIT ATAU 
NOMINAL

SEMUA VARIABEL PENJELAS BAHWA KITA TELAH MEMPERTIMBANGKAN

SEJAUH INI TELAH DIUKUR PADA SKALA KONTINU.

• NAMUN, ANALISIS REGRESI DAPAT DIGENERALISASI UNTUK

MEMASUKKAN VARIABEL PENJELAS DISKRIT ATAU NOMINAL JUGA.

SEBAGAI CONTOH, KITA MUNGKIN BERTANYA-TANYA APAKAH DIAGNOSIS

TOXEMIA WANITA HAMIL MEMPENGARUHI LINGKAR KEPALA

ANAKNYA. KEHADIRAN TOKSEMIA ADALAH SUATU VARIABEL ACAK

DIKOTOMIS; SEORANG WANITA BAIK TELAH ATAU DIA TIDAK. KAMI INGIN

UNTUK DAPAT MENGUKUR DAMPAK DARI TOKSEMIA PADA KELILING KEPALA

DENGAN MEMBANDINGKAN BAYI YANG IBUNYA MENDERITA KONDISI INI

UNTUK BAYI YANG IBUNYA TIDAK.
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VARIABEL DUMMY. 

• KARENA VARIABEL PENJELAS DALAM ANALISIS REGRESI HARUS

MENGASUMSIKAN NILAI-NILAI NUMERIK, KAMI MENUNJUK

KEHADIRAN TOKSEMIA OLEH 1 DAN TIDAK ADANYA OLEH 0. ANGKA-

ANGKA INI TIDAK MEWAKILI APAPUN PENGUKURAN YANG SEBENARNYA,

MEREKA HANYA MENGIDENTIFIKASI KATEGORI DARI SUATU VARIABEL

ACAK NOMINAL.

• KARENA NILAI-NILAI TIDAK MEMILIKI SIGNIFIKANSI KUANTITATIF,

VARIABEL PENJELAS DISEBUT INDIKATOR VARIABEL, ATAU VARIABEL

DUMMY.
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HASIL RISET

• KARENA SATU BARIS SELURUHNYA TERLETAK DI ATAS YANG LAIN,

MODEL JUGA MENUNJUKKAN BAHWA, PADA SEMUA NILAI USIA

KEHAMILAN, ANAK-ANAK YANG IBUNYA TIDAK MEMILIKI

TOKSEMIA CENDERUNG MEMILIKI LINGKAR KEPALA LEBIH BESAR

DARIPADA ANAK-ANAK YANG IBUNYA MEMILIKINYA.

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 28



GEJALA DARI COLLINEARITY ADALAH 
KETIDAKSTABILAN

• TERLEPAS DARI STRATEGI YANG KITA PILIH AGAR SESUAI DENGAN MODEL, KITA

HARUS SELALU MENGECEK KEBERADAAN COLLINEARITY.

• COLLINEARITY TERJADI KETIKA DUA ATAU LEBIH DARI VARIABEL PENJELAS

YANG BERKORELASI SEJAUH BAHWA MEREKA MENYAMPAIKAN DASARNYA

INFORMASI YANG SAMA TENTANG VARIASI DALAM Y.

• SALAH SATU GEJALA DARI COLLINEARITY ADALAH KETIDAKSTABILAN

KOEFISIEN YANG DIPERKIRAKAN DAN KESALAHAN STANDAR MEREKA. SECARA

KHUSUS, KESALAHAN STANDAR SERING SANGAT BESAR, INI BERARTI BAHWA ADA

BANYAK VARIABILITAS SAMPLING KOEFISIEN YANG DIPERKIRAKAN.
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REGRESSION (MUNRO,2001, P.246)

REGRESSION IS A USEFUL TECHNIQUE THAT ALLOWS US TO PREDICT

OUTCOMES AND EXPLAIN THE INTERRELATIONSHIPS AMONG

VARIABLES. THE TYPE OF DATA REQUIRED AND THE UNDERLYING

ASSUMTIONS ARE THE FOR REGRESSION AS FOR CORRELATION.

• REGRESI ADALAH TEKNIK SANGAT BERGUNA YANG

MEMUNGKINKAN KITA UNTUK MEMPREDIKSI HASIL DAN

MENJELASKAN INTERRELATIONSHIPS DI ANTARA VARIABEL. JENIS

DATA YANG DIBUTUHKAN DAN MENDASARI ASSUMTIONS ADALAH

UNTUK REGRESI SEPERTI UNTUK KORELASI.
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ASSUMTIONS

• 1. JUMLAH SAMPEL HARUS REPRESENTATIF UNTUK UJI INFERENSIAL.

• 2. VARIABEL YANG BERKORELASI ANTARA VARIABEL X TERHADAP Y , 

MASING- MASIH HARUS MEMILIKI DISTRIBUSI NORMAL. 

• 3. ASUMSI HOMOKEDASTISITAS TERPENUHI, UNTUK SETIAP NILAI

VARAIBEL X (INDEPENDENT) , DISTRIBUSI NILAI Y HARUS MEMILIKI

MENDEKATI VARIABILITAS YANG SAMA.

• 4. RELATION ANTARA VARIABEL X TERHADAP Y, HARUS LINEAR.
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RUMUS COHEN (1987) 
MUNRO,2001,P.247

• N= TOTAL UKURAN SAMPEL

• L = EFFECT SIZE INDEX ( UNTUK 3 VARIABEL INDEPENDENT, 80% POWER DAN , TINGKAT SIG. 0.05 ADALAH = 10.90)→ TABEL COHEN.

• U = JUMLAH VARIABEL INDEPENDEN

• R² = (0.02 UNTUK EFEK RENDAH, 0.13 UNTUK EFEK SEDANG DAN 0.30 UNTUK BESAR).
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JACOB COHEN
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COHEN

• F²= R²/1-R²
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RUMUS KREJCIE AND MORGAN
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KREJCIE DAN MORGAN
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SUMBER

• HTTP://WWW.IPBL.EDU.MY/BM/PENYELIDIKAN/JURNALPAPERS/JURN

AL2006/CHUA06.PDF

• RUMUS KREJCIE AND MORGAN →

DIUNDUH 8 NOVEMBER 2013, JAM 12.50 BBWI.
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UJI ASUMSI DASAR

• DATA YANG TELAH DIKUMPULKAN DILAKUKAN UJI ASUMSI DASAR

YANG MELIPUTI:
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NO PENGUJIAN ANALISIS

1 UJI NORMALITAS EXPLORE (ONE SAPLE KOLMOGOROF-

SMIRNOV)

2 UJI HOMOGENITAS ONE WAY ANOVA ( TEST OF HOMOGENITY OF 

VARIANCE)

3 UJI LINEARITAS COMPARE MEANS ( TEST OF LINEARITY )



UJI NORMALITAS DENGAN GRAFIK &

BENTUK GRAFIK HISTOGRAM  DAN BENTUK 
TRASFORMASI

UJI NORMALITAS DENGAN GRAFIK (GHOZALI, 2001)

NORMAL -TIDAKNYA SUATU DATA DAPAT DIDETEKSI LEWAT PLOT GRAFIK HISTOGRAM. PILIH MENU GRAPH PILIH HISTOGRAM

• BENTUK TRANSFORMASI DATA

(MENU TRANSFORM, COMPUTE)

• UJI EXPLORE → K-S ( DATA >50 ) DAN S-W ( DATA < 50)

• TRANSFORMASI DATA DENGAN RANK CASES NORMAL SCORE.

BENTUK GRAFIK HISTOGRAM  DAN BENTUK TRASFORMASI

MODERATE  POSITIVE SKEWNESS (MENCENG KE KIRI),  BENTUK TRANSFORMASI: SQRT (X) ATAU AKAR KUADRAT 

• SUBSTANSIAL POSITIVE SKEWNESS , BENTUK TRANSFORMASI: LG10 (X) ATAU LOGARITMA 10 ATAU LN 

• SEVERE POSITIVE SKEWNESS DENGAN BENTUK L , BENTUK TRASFORMASI: 1/X ATAU INVERSE 

• MODERATE NEGATIVE SKEWNESS ( MENCENG KE KANAN) , BENTUK TRANSFORMASI: SQRT (K-X) 

• SUBSTANSIAL NEGATIVE SKEWNESS , BENTUK TRASFORMASI: LG10 (K-X) 

• SEVERE NEGATIVE DENGAN BENTUK J , BENTUK TRASFORMASI: 1/(K-X) 
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1. UJI NORMALITAS  K-S
• ANALYZE

• DESCRIPTIVE STATISTICS

• EXPLORE

• MASUKAN SELURUH VARIABEL KE KOTAK DEPENDENT LIST.

• PLOT

• NORMALITY PLOTS WITH TESTS

• PERHATIKAN :NILAI SIG.  >0.05 , DATA BERDISTRIBUSI NORMAL.
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LUARAN UJI NORMALITAS DATA 
UNIVARIAT K-S DAN S-W
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UJI NORMALITAS DEPENDENT VARIABEL: 
REGRESSION STANDARDIZED RESIDUAL.
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CONTOH DATA RESIDUAL UNTUK UJI
NORMALITAS VARIABEL DEPENDENT
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KURVA NORMAL

• KURVA NORMAL; MODE, MEDIAN DAN MEAN BERHIMPIT MENJADI SATU, KARENA

KURVA SIMETRIS KIRI DAN KANAN.

• SEBELUM DILAKUKAN PEMODELAN, ADA BAIKNYA DATA RETURN DIUJI TERLEBIH

DAHULU APAKAH MEMENUHI ASUMSI INI ATAUKAH TIDAK, SEHINGGA

PEMODELAN YANG DILAKUKAN AKAN LEBIH VALID.

• ADA BANYAK CARA UNTUK MENGUJI NORMALITAS DATA, BAIK YANG

BERSIFAT EKSPLORATIF (DESKRIPTIF) MAUPUN KONFIRMATIF (INFERENSI).

SALAH SATU CARA YANG BERSIFAT EKSPLORATIF ADALAH DENGAN MELIHAT

BENTUK KURVA PENDEKATAN DISTRIBUSI EMPIRISNYA, YAITU DENGAN

MENGHITUNG NILAI SKEWNESS (KEMENCENGAN) DAN KURTOSIS

(KERUNCINGAN) KEMUDIAN MEMBANDINGKAN DENGAN DISTRIBUSI NORMAL.
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KURVA “RIGH SKEWED” &KURVA “ LEFT 
SKEWED”

• SKEWNESS ADALAH DERAJAT KETIDAKSIMETRISAN SUATU DISTRIBUSI.

JIKA KURVA FREKUENSI SUATU DISTRIBUSI MEMILIKI EKOR YANG LEBIH

MEMANJANG KE KANAN (DILIHAT DARI MEANNYA) MAKA

DIKATAKAN MENCENG KANAN (POSITIF) DAN JIKA SEBALIKNYA MAKA

MENCENG KIRI (NEGATIF). SECARA PERHITUNGAN, SKEWNESS ADALAH

MOMEN KETIGA TERHADAP MEAN.

• DISTRIBUSI NORMAL (DAN DISTRIBUSI SIMETRIS LAINNYA, MISALNYA

DISTRIBUSI T ATAU CAUCHY) MEMILIKI SKEWNESS 0 (NOL).
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KURTOSIS ADALAH DERAJAT 
KERUNCINGAN ( NORMAL=3)

• KURTOSIS ADALAH DERAJAT KERUNCINGAN SUATU DISTRIBUSI

(BIASANYA DIUKUR RELATIF TERHADAP DISTRIBUSI NORMAL).

KURVA YANG LEBIH LEBIH RUNCING DARI DISTRIBUSI NORMAL

DINAMAKAN LEPTOKURTIK, YANG LEBIH DATAR PLATIKURTIK DAN

DISTRIBUSI NORMAL DISEBUT MESOKURTIK. KURTOSIS DIHITUNG

DARI MOMEN KEEMPAT TERHADAP MEAN. DISTRIBUSI NORMAL

MEMILIKI KURTOSIS = 3, SEMENTARA DISTRIBUSI YANG LEPTOKURTIK

BIASANYA KURTOSISNYA > 3
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KURVA “ MENCENG KANAN DAN 
KURVA MENCENG KIRI.

• GAMBAR KURVA:
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KURVA KURTOSIS/ KERUNCINGAN
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RUMUS MEAN & VARIANSI
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RUMUS DERAJAT KETIDAKSIMETRISAN SUATU DISTRIBUSI & DERAJAT 

KERUNCINGAN SUATU DISTRIBUSI
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SENSITIVITY ANALYSIS-
JENIS DAN CARA PENGUJIAN DATA

1. UJI MISSING DATA
UNTUK MENGUJI APAKAH DATA YANG TIDAK LENGKAP ATAU ADA DATA YANG

HILANG AKAN DAPAT MEMPENGARUHI PENGOLAHAN DATA SECARA

KESELURUHAN.

MISISNG DATA YANG DITOLERANSI HANYA 1%.

PERLAKUAN TERHADAP MISSING DATA:

1. MEMBUANG BARIS YANG MENGANDUNG MISSING VALUE.

2. MENGISI SEL DATA YANG HILANG DENGAN NILAI RATA- RATA KESELURUHAN

DATA. (SANTOSO, 2012, P.28)
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OPERASI STATISTIK DENGAN SPSS

• ANALYZE

• MISSING VALUE ANALYSIS.

• MASUKAN VARIABEL METRIK PADA KOLOM QUATITATIVE VARIABEL.

• MASUKAN VARIABEL KATEGORIKAL PADA KOTAK CATEGORRCAL VARIABLES.

• MASUKAN VARIABEL NAMA/ID PADA KOTAK CASE LABELS .

• PADA BAGIAN ESTIMATION AKTIFKAN KOTAK LISTWISE (JUMLAH DATA YANG 

DIPROSES SAMA) , PAIRWISE ( DATA YANG LENGKAP DAN BERPASANGAN) DAN

EM.(METODE UNTUK MENGHASILKAN ANGKA MCAR).
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NEXT

• KLIK IKON PADA KOTAK PATTERNS (ATAS KIRI)

• PADA BAGIAN DISPLAY AKTIFKAN: TABULATED CASES DAN CASES WITH MISSING VALUE.

• CONTINUE

• KLIK IKON DESCRIPTIVES

• UNIVARIATE STATISTICS

• PERCENT MISMATCH

• CROSSTABULATION OF CATEGORICAL AND INDICATORS VARIABLES.

• CONTINUE

• OK.
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UJI DATA OUTLIER

• SETELAH MELAKUKAN TRANSFORMASI UNTUK MENDAPATKAN NORMALITAS

DATA ( GHOZALI,2006,P.36) LANGKAH SCRENING BERIKUTNYA YANG HARUS

DILAKUKAN ADALAH MENDETEKSI DATA OUTLIER.

• OUTLIER ADALAH KASUS ATAU DATA YANG MEMILIKI KARAKTERISTIK YANG

TERLIHAT SANGAT BERBEDA JAUH DARI OBESERVASI- OBSERVASI LAINNYA

YANG MUNCUL DALAM BENTUK NILAI EKSTREM , BAIK UNTUK VARIABEL

TUNGGAL ATAU VARIABEL KOMBINASI.
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DATA OUTLIER

• OUTLIER ADALAH DATA YANG MENYIMPANG DARI SEKUMPULAN

DATA YANG LAIN (FERGUSON,1961).

• OUTLIER ADALAH PENGAMATAN YANG TIDAK MENGIKUTI SEBAGIAN

BESAR POLA DAN TERLETAK JAUH DARI PUSAT DATA (BEARNETT,1981).

• OULIER ADALAH DATA YANG MUNCUL MEMILIKI KARAKTERISTIK UNIK

TERLIHAT SANGAT JAUH BERBEDA DARI OBESERVASI LAINNYA DAN

MUNCUL DALAM NILAI EKSTRIM. (HAIR ET AL, 1995).
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PENGARUH DATA OUTLIER

• DATA OUTLIER BERPENGARUH PADA PROSES ANALISIS DATA,

TERHADAP NILAI MEAN DAN SD.

• VARIANCE DATA MENJADI BESAR.

• INTERVAL DAN RANGE DATA MENJADI LEBAR.

• MEAN TIDAK DAPAT MENUNJUKAN NILAI YANG SEBENARNYA (

BIAS).

• KESALAHAN DALAM MENGAMBIL KEPUTUSAN.
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NEXT- 4 PENYEBAB TIMBULNYA DATA 
OUTLIER

• 1. KESALAHAN ENTRI DATA.

• 2. GAGAL MENSPESIFIAKSI ADANYA MISSING VALUE.

• 3. BUKAN MERUPAKAN ANGGOTA POPULASI.

• 4. BERASAL DARI POPULASI TETAPI MEMILIKI NILAI

EKSTREM. DAN TIDAK TERDISTRIBUSI DENGAN NORMAL.
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DETEKSI UNIVARIAT OUTLIER

• MENENTUKAN BATAS YANG AKAN DIKATEGORIKAN SEBAGAI DATA OUTLIER

DENGAN MENGKONVERSI NILAI DATA KE DALAM SKOR STANDARDIZED (MEMILIKI

NILAI MEANS SAMA DENGAN NOL DAN STANDAR DEVIASI =1)

• MENURUT (HAIR, 1998):

• SAMPEL <80 → STANDAR SKOR PLUS MINUS NILAI 2,5. DINYATAKAN OUTLIER.

• SAMPEL >80 → PLUS MINUS NILAI 4.

• DATA YANG DIUJI OUTLIER ADALAH DATA YANG SUDAH DILAKUKAN

SCRENING NORMALITAS NYA.
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LANGKAH OPERSI SPSS

• ANALYZE

• DESCRIPTIVE STATISTICS

• DESCRIPTIVE

• MASUKAN DATA VARIABEL YG SDH NORMAL

• KLIK → SAVE STANDARDIZED VALUE AS VARIABEL (DALAM NILAI Z)

• OK.
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FILOSOFIS DATA OUTLIER

• OUT LIER TETAP DIPERTAHANKAN JIKA DATA

OUTLIER TERSEBUT MEMANG REPRESENTASI DARI

POPULASI.

• OUT LIER HARUS DIBUANG → JIKA DATA OUTLIER

TERSEBUT MEMANG TIDAK MENGGABARKAN

OBSERVASI DALAM POPULASI.
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UJI  HOMOGENITAS

• UJI HOMOGENITAS DIGUNAKAN UNTUK MENGETAHUI APAKAH

VARIAN POPULASI SAMA ATAU TIDAK.

• UJI INI DILAKUKAN SEBAGAI PRASYARAT DALAM ANALISIS

INDEPENDENT SAMPLE T TEST DAN ANOVA.

• ASUMSI YANG MENDASARI BAHWA VARIAN DARI POPULASI ADALAH

SAMA, SEBAGAI KRITERIA PENGUJIAN JIKA NILAI SIG. > 0.05.
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LANGKAH OPERASI SPSS

• ANALYZE

• COMPARE MEAN 

• ONE WAY ANOVA

• MASUKAN VARIABEL DEPENDENT DAN FACTOR UNTUK KATEGORI.

• OPTIONS→ STATISTICS

• DESKRIPTIVE

• HOMOGENETY OF VARIANCE TEST

• OK

• PERHATIKAN NILAI SIG. >0.05 MAKA  KELOMPOK MEMILIKI VARIAN SAMA.
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MODEL PERSAMAAN STRUKTURAL

SEM 
(STRUCTURAL EQUATION MODELING)
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SEM

FOKUS PADA KAJIAN VARIABEL LATEN
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KEGUNAAN SEM (MUNRO,2001,P.379)

MENGUJI MODEL TEORITIS SECARA EMPIRIS.

• MEREFER PADA COVARIANCE STRUCTURE MODELING.

• COVARIANCE  DI-ANALISIS DALAM SEM.

• ANALISIS VARIABEL LATEN

• SEM MELAKUKAN ANALISIS  PENGARUH DIANTARA VARIABEL LATEN.

• SEM MENGUKUR KONSTRUK TEORITIS.
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THE MEASUREMENT MODEL & THE 
THEORETICAL MODEL 

• THE MEASUREMENT MODEL ADALAH SUATU MODEL ,

BAGAIMANA KONSTRUK TEORITIS DAPAT DIUKUR.

• THE THEORETICAL MODEL ADALAH SUATU MODEL DARI

HIPOTESIS RISET YANG MENUNJUKAN PENGARUH

DIANTARA KONSTRUK TEORITIS ( VARIABEL LATEN).

( MUNRO,2001,P.380).
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TUJUAN UTAMA ANALISIS MULTIVARIAT
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MANFAAT ( HAIR,1998,P.578)

• MENGHADAPI  SUATU SET PERTANYAAN  RISET YANG SALING 

INTERRELATED.

• FENOMENA YANG SIMULTAN BAIK IMPLIKASI MANAJERIAL DAN 

KAJIAN TEORITIS.
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LUARAN HIBRID - MODEL SEM
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SEM

• MODEL PERSAMAAN STRUKTURAL MERUPAKAN GABUNGAN DARI ANALISIS

FAKTOR DAN ANALISI JALUR MENJADI SATU METODE STATISTIK KOMPREHENSIF.

• DALAM PRAKTEK PENDEKATAN KONVENSIONAL MODEL PERSAMAAN

STRUKTURAL DI GUNAKAN DALAM PENELITIAN SOSIAL

DAN PERILAKU.
• STRUCTURAL EQUATION MODELING (SEM) MERUPAKAN GABUNGAN DARI 2 METODE

STATISTIK YANG TERPISAH YAITU ANALSIS FAKTOR YANG DIKEMBANGKAN DI ILMU

PSIKOLOGIS DAN PSIKOMETRI SERTA MODEL PERSAMAAN SIMULTAN (SIMULTANEOUS

EQUATION MODELING) YANG DIKEMBANGKAN DI EKONOMETRIKA. ( GHOZALI, 2004,P. 3-

5)

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 70



MODEL PERSAMAAN STRUKTURAL 
MERUPAKAN GABUNGAN
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SEM
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SEM

• SEM ADALAH SEBUAH TEKNIK ANALISIS STATISTIKA YANG

MENGKOMBINASIKAN BEBERAPA ASPEK YANG TERDAPAT PADA ANALSIS

JALUR DAN ANALSIS FAKTOR KONFIRMATORI UNTUK MENGESTIMASI

BEBERAPA PERSAMAAN SECARA SIMULTAN.

• SECARA UMUM TEKNIK SEM TERBAGI 2:

1. MENGESTIMASI PERSAMAAN YANG SALING BERHUBUNGAN SECARA

SIMULTAN ( STRUCTURAL MODEL ).

2. MEREPRESENTASIKAN VARIABEL CONSTRUCT BERDASARKAN

VARIABEL OBSERVED ( MEASUREMENT MODEL ).
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TEKNIK SEM TERBAGI 2
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KONSEP DASAR SEM

• VARIABEL PENELITIAN ADALAH KONSEP ABSTRAK YANG DAPAT

DIUKUR.

• KONSEP ABSTRAK ITU ANTARA LAIN: KEPUASAN KERJA, KOMITMEN,

MOTIVASI DLS.

• KONSEP ABSTRAK YANG DAPAT DIUKUR DISEBUT OBSERVED VARIABEL

ATAU MANIFEST VARIABEL.

• KONSEP ABSTRAK YANG TIDAK DAPAT DIUKUR SECARA LANGSUNG

DISEBUT ANOBSERVED VARIABEL ATAU LATEN VARIABEL ATAU

KONSTRUK.
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VARIABEL PENELITIAN
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2  JENIS LATENT VARIABEL
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THE BASIC FORMULATION OF SEM IN 
EQUATION FORM IS:
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BASIC FORMULATION

METRIC METRIC, NON-METRIC

Y1 = X1.1 + X1.2+X1.3+…X1.n

Y2 = X2.1 + X2.2+X2.3+…X2.n

Ym = Xm.1 + Xm.2+Xm.3+…Xm.n
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KEUNGGULAN KONSEP SEM

• MODEL PERSAMAAN STRUKTURAL INI MEMILIKI

KEUNGGULAN DIBANDINGKAN DENGAN METODE

STATISTIC MULTIVARIATE YANG LAIN, KARENA DALAM

LATEN VARIABEL DIMASUKAN KESALAHAN

PENGUKURAN DALAM MODEL.
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MODEL ANALISIS JALUR (X,Η, Γ,B,Φ,Z)
• CONTOH:

• PERSAMAAN STRUKTURAL (MODEL HUBUNGAN ANTAR VARIABEL LATEN) SECARA MATEMATIS:

• Η1 = Γ1.1Ξ1 + Γ1.2Ξ2 + Ζ1

• Η2 = Γ1.1Ξ1 + Γ1.2Ξ2 + B2.1 Η1 + Ζ2
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PENJELASAN GAMBAR (Ξ,Η,G, Β,Φ, Ζ)
1. TERDAPAT 2 VARIABEL LATENT: EXOGEN (KSI)→ Ξ DAN 2 VARIABEL

ENDOGEN (ETA)→ Η.

2. ANTAR VARIABEL EXOGEN HARUS DIKOVARIANKAN DENGAN SALING

MENGHUBUNGKAN KEDUA VARIABEL INI DENGAN DUA ANAK PANAH

(HUBUNGAN KORELASI ATAU KOVARIAN) DENGAN SIMBOL (PHI)→Φ.

3. SEMUA VARIABEL ENDOGEN HARUS DIBERI ERROR ATAU NILAI RESIDUAL

REGRESSION DENGAN SIMBOL (ZETA) →Ζ.

4. KOEFESIEN REGRESSI ANTAR VARIABEL EXOGEN DENGAN ENDOGEN

DIBERI SIMBOL GAMA →Γ.

5. KOEFISIEN REGRESI ANTARA VARIABEL ENDOGEN DENGAN VARIABEL

ENDOGEN LAINNYA DIBERI SIMBOL BETA→Β.

6. NILAI FACTOR LOADING DARI INDIKATOR KE KONSTRUK LATEN DISEBUT

LAMDA →Λ
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DIAGRAM LANGKAH PENDEKATAN MODEL 
PERSAMAAN STRUKTURAL

• DIAGRAM.
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CONTOH MODEL HYBRID
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CONTOH OUT-PUT AMOS 16.0
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CONTOH 02.
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KETERANGAN BENTUK NOTASI MODEL

• 1. BERBENTUK PERSEGI ADALAH

VARIABEL OBSERVASI ( OBSERVED

VARIABLES ).

2. BERBENTUK OVAL ADALAH VARIABEL

KONSTRUK/ LATENT (CONSTRUCT

VARIABLES ).
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1. STRUCTURAL MODEL

•STRUCTURAL MODEL ADALAH

BAGIAN DARI SEM YANG

MENAMPILKAN HUBUNGAN ANTARA

VARIABEL- VARIABEL CONSTRUCT.
• PATH DIAGRAM
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DUA TIPE VARIABEL

• EXOGENOUS VARIABEL ADALAH VARIABEL KONSTRUK YANG

MENJADI VARIABEL INDEPENDEN , YAITU VARIABEL YANG TIDAK

DIPREDIKSI OLEH VARIABEL KONSTRUK YANG LAIN.

• ENDOGENOUS VARIABLE ADALAH VARIABEL CONSTRUK YANG

MENJADI VARIABEL DEPENDENT , YANG DIPREDIKSI OLEH VARIABEL

KONSTRUK YANG LAIN.
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2. MEASUREMENT MODEL

•MEASUREMENT MODEL ADALAH BAGIAN

DARI SEM YANG MENSPESIFIKASIKAN

INDIKATOR ( VARIABEL OBSERVED)

UNTUK SETIAP VARIBEL CONSTRUCT,

SERTA MENGHITUNG NILAI RELIABILITAS

UNTUK CONSTRUCT TSB.
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DASAR TEORI DALAM SEM

• MODEL YANG AKAN DIANALISIS DENGAN SEM HARUS MEMILIKI

LANDASAN TEORI YANG MENDUKUNG. DENGAN DEMIKIAN MODEL

YANG DIREKA- REKA, ATAU TIDAK MEMILIKI LANDASAN TEORI TIDAK

DAPAT DIPAKAI.

• TEORI DIDEFINISIKAN SEBAGAI KELOMPOK HUBUNGAN KAUSAL

YANG SISTEMATIS YANG MEMBERIKAN PENJELASAN YANG

KONSISTEN DAN MENYELURUH DARI SEBUAH FENOMENA.

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 91



PEMBENTUKAN MODEL DALAM SEM

• MEMILKI 3 STRATEGI DALAM MEMBANGUN MODEL DALAM SEM

YANG MELIPUTI:

1. CONFIRMATORY MODELING STARTEGY : MAYORITAS APLIKASI

SEM MEMPERGUNAKAN CONFIRMATORY MODELING STRATEGY,

DIMANA SEORANG PENELITI MEMBENTUK MODEL DAN HANYA

INGIN MENGETAHUI APAKAH MODEL TERSEBUT COCOK/ FIT.

STRATEGI INI HANYA MENGUJI SATU MODEL SAJA, TIDAK

MEMBANDINGKAN DENGAN MODEL LAIN YANG KEMUNGKINAN

MEMILIKI TINGKAT KECOCOKAN YANG LEBIH BAIK.
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COMPETING MODELS STRATEGY

• COMPETING MODELS STRATEGY: DALAM COMPETING MODEL

STRATEGY, MODEL YANG DIUSULKAN DIBANDINGKAN DENGAN

BEBRAPA MODEL ALTERNATIF. STRATEGY INI LEBIH BAIK DARI

CONFIRMATORY MODEL STRATEGY, KARENA DAPAT

MEMBANDINGKAN DAN MENDAPATKAN INFORMASI YANG LEBIH

BAIK DAN LEBIH BANYAK, SEHINGGA DAPAT MENGAMBIL

KEPUTUSAN MODEL YANG LEBIH BAIK AKAN DIGUNAKAN.
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MODEL DEVELOPMENT STRATEGY

• MODEL DEVELOPMENT STRATEGY: SEBUAH

MODEL DIUSULKAN LALU DIESTIMASI

DENGAN SEM, SETELAH DIPEROLEH

HASILNYA MAKA DILAKUKAN

RESPESIFIKASI MODEL UNTUK

MENDAPATKAN MODEL YANG LEBIH BAIK.
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LANGKAH- LANGKAH APLIKASI SEM
( GHOZALI,2004,P.61)

• 1. MEMBANGUN MODEL BERDASARKAN TEORI

• 2. MEMBENTUK PATH DIAGRAM

• 3. MENERJEMAHKAN PATH DIAGRAM KE DALAM PERSAMAAN

• 4. MENENTUKAN MATRIK INPUT DAN MENGESTIMASI MODEL.

• 5. MENGIDENTIFIKASI MODEL STRUKTURAL YANG DIHASILKAN.

• 6. MENGUJI KECOCOKAN MODEL.

• 7. MENGINTERPRETASI DAN MODIFIKASI MODEL.
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LANGKAH 1 : MEMBANGUN MODEL 
BERDASARKAN TEORI

• MODEL SEM BERDASARKAN PADA TEORI HUBUNGAN KAUSAL, DI MANA

PERUBAHAN DARI SEBUAH VARIABEL AKAN

MEMPENGARUHI VARIABEL LAINNYA.

ADA 4 KRITERIA YANG HARUS DIPENUHI MODEL KAUSAL:

• 1. ADANYA ASOSIASI HUBUNGAN ANTARA KEDUA VARIABEL.

• 2. ADANYA PERBEDAAN WAKTU TERJADINYA SEBAB-AKIBAT.

• 3. TIDAK ADANYA VARIABEL SEBAB YANG LAIN.

• 4. ADANYA DUKUNGAN TEORI .
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LANGKAH 2: MEMBENTUK PATH 
DIAGRAM

• DIAGRAM JALUR ADALAH SEBUAH DIAGRAM/ GAMBAR YANG

MENAMPILKAN HUBUNGAN (RELATIONSHIPS) YANG LENGKAP DARI

KELOMPOK KONSTRUK. DIMANA GARIS LURUS DENGAN PANAH

YANG MENUNJUKAN BAHWA VARIABEL SUMBER PANAH ADALAH

VARIABEL INDEPENDENT DAN VARIABEL YANG DIKENAI PANAH

ADALAH VARIABEL DEPENDENT.
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LANGKAH 3: MENERJEMAHKAN PATH 
DIAGRAM KE DALAM PERSAMAAN

SETELAH MODEL DISUSUN DALAM PATH DIAGRAM , SELANJUTNYA

MENERJEMAHKAN DIAGRAM TERSEBUT KE DALAM BENTUK PERSAMAAN

MATEMATIS.

TERDAPAT 2 KELOMPOK PERSAMAAN YAITU:

• 1. PERSAMAAN STRUKTURAL MODEL : VARIABEL INDEPENDENT DALAM

NOTASI LISREL DISIMBOLKAN DENGAN (KSI), SEDANGKAN VARIABEL

DEPENDENT DISIMBOLKAN DENGAN (ETA). PANAH YANG MENUNJUKAN

DARI VARIABEL INDEPENDENT KE VARIABEL INDEPENDENT DAN ATAU

DEPENDENT DISIMBOLKAN DENGAN (GAMMA). SEDANGKAN PANAH DARI

VARIABEL DEPENDENT KE VARIABEL DEPENDENT DIBERI SIMBOL ( BETA ).

• 2. PERSAMAAN MEASUREMENT MODEL: UNTUK VARIABEL INDEPENDENT

MAUPUN DEPENDENT DISIMBOLKAN DENGAN (LAMDA). INDEPEDENT=

LAMDA X DAN DEPENDENT= LAMDA Y.
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CONTOH PERSAMAAN MATEMATIS: 
PERSAMAAN STRUKTURAL

PERSAMAAN STRUKTURAL : 

YANG DIRUMUSKAN UNTUK MENYATAKAN HUBUNGAN

KAUSALITAS ANTAR BERBAGAI KONSTRUK.

(1). C    = Γ.1 BP + Γ.2 KJ + Ζ.1

(2). AM   = Γ.3 BP + Γ.4 KJ + Β.1 C + Ζ.2
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PERSAMAAN SPESIFIKASI MODEL

PERSAMAAN SPESIFIKASI MODEL PENGUKURAN

( MEASUREMENT MODEL ) :  

DI MANA HARUS DITENTUKAN VARIABEL YANG MENGUKUR KONSTRUK DAN MENENTUKAN SERANGKAIAN MATRIKS YANG MENUNJUKAN KORELASI YANG DIHIPOTESISKAN ANTAR KONSTRUK ATAU VARIABEL. KOMPONEN- KOMPONEN STRUKTURAL MENGEVALUASI HIPOTESIS 

HUBUNGAN KAUSAL, ANTARA LATEN VARIABEL PADA MODEL KAUSAL DAN MENUNJUKAN SEBUAH PENGUJIAN SELURUH HIPOTESIS DARI MODEL SEBAGAI SATU KESELURUHAN. 

• (1). BAURAN PEMASARAN JASA (BP) MERUPAKAN VARIABEL EKSOGEN :

• BP.1 = Λ1 BP + Ε1

BP.2 = Λ2 BP + Ε2

.............

BP.49 = Λ49 BP + Ε49

• (2). KUALITAS JASA (KJ) MERUPAKAN VARIABEL       EKSOGEN :

KJ.1 = Λ50 KJ + Ε50

................

KJ.86 = Λ135 KJ + Ε135
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PERSAMAAN SPESIFIKASI MODEL

• (3). CITRA INSTITUSI (C) MERUPAKAN VARIABEL ENDOGEN :

C.1 = Λ 136 C + Ε136

................

C.18 = Λ 153 C + Ε153

• (4). AKTIVITAS MAHASISWA  (AM) MERUPAKAN VARIABEL ENDOGEN:

AM.1 = Λ 154 AM + Ε154

.................

AM. 12 = Λ 165 AM + Ε165
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LANGKAH 4: MENENTUKAN MATRIK 
INPUT DAN MENGESTIMASI MODEL

• DATA INPUT: DATA YANG DIINPUT UNTUK SEM BERUPA MATRIK

VARIANS / KOVARIANS ATAU MATRIK KORELASI.

ASUMSI DALAM SEM:

• 1. SETIAP PENGAMBILAN HARUS INDEPENDENT.

• 2. SAMPEL YANG DIPEROLEH MERUPAKAN SAMPEL RANDOM.

• 3. HUBUNGAN ANTAR VARIABEL BERBENTUK LINIER.

• 4. DATA BERDISTRIBUSI NORMAL.
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MATRIK KORELASI ATAU KOVARIAN

• 1. MATRIK KOVARIANS: HASIL YANG DIPEROLEH DENGAN

MENGGUNAKAN MATRIK KOVARIANS SEBAGAI INPUT PEMBANDING

YANG VALID DENGAN HASIL ESTIMASI DARI SAMPEL YANG LAIN

DENGAN MODEL YANG SAMA. HAL INI TIDAK DAPAT DILAKUKAN

APABILA DIGUNAKAN MATRIK KORELASI. KEKURANGAN MATRIK

KOVARIANS ADALAH BAHWA HASIL YANG DIPEROLEH TIDAK

MUDAH UNTUK DIINTEPRETASIKAN KARENA SETIAP VARIABEL

MEMILIKI SATUAN (MATRIK) YANG BERBEDA.
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MATRIK KORELASI
• 2. MATRIK KORELASI: KEUNTUNGAN MENGGUNAKAN MATRIK KORELASI

SEBAGAI INPUT ADALAH BAHWA NILAI YANG DIPEROLEH SUDAH

MEMILIKI SATUAN YANG SAMA (STANDARDIZE VARIAN)DAN NILAI YANG

DIPEROLEH DAPAT LANGSUNG DIBANDINGKAN. PENGGUNAAN MATRIK

KORELASI SANGAT TEPAT BILA TUJUAN DARI PENELITIAN ADALAH UNTUK

MELIHAT MODEL HUBUNGAN (RELATION) ANTAR CONSTRUCT.
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JENIS KORELASI

• DIPERGUNAKAN KORELASI PRODUCT MOMENT PEARSON, DENGAN

SKALA DATA YANG DIPERGUNAKAN ADALAH SKALA UKUR

INTERVAL.

• BILA DATA BERSKALA UKUR ORDINAL DENGAN KATEGORI MINIMAL 3,

MAKA DIGUNAKAN KORELASI POLYCHORIC, SEDANGKAN UNTUK

BINER DIGUNAKAN KORELASI TETRACHORIC.
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UKURAN SAMPEL
• SAMPEL YANG DIGUNAKAN ANTARA 100 –

200 RESPONDEN, BILA LEBIH DARI 400

MAKA LISREL AKAN MENJADI SANGAT

SENSITIF.

• DEANGAN MODEL ESTIMASI MENGGUNAKAN

ML (MAKSIMUM LIKELIHOOD) LEBIH

EFISIEN DAN UNBIASED, JIK AUMAI

NORMLITAS MULTIVARIATE DIPENUHI,

MINIMUM DIPERLUKAN 100 SAMPEL.23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 106



LANGKAH 5: MENGIDENTIFIKASI MODEL 
STRUKTURAL YANG DIHASILKAN

• PADA SAAT ESTIMASI SERINGKALI NILAI YANG DIHASILKAN TIDAK

BERMAKNA, ATAU TIDAK MASUK AKAL. HAL INI DISEBABKAN KARENA

PROGRAM TIDAK DAPAT MENGHASILKAN SEBUAH SOLUSI YANG

UNIK.

• SATU HAL YNAG HARUS DIPENUHI ADALAH BAHWA PERSAMAAN

YANG ADA HARUS LEBIH BANYAK DARI PARAMETER YANG AKAN

DITAKSIR. SEMAKIN KOMPLEKS MODEL YANG AKAN DIESTIMASI,

TIDAK ADA JAMINAN BAHWA SOLUSI YANG UNIK AKAN DIPEROLEH.
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IDENTIFIKASI 1 : JUST-IDENTIFIED

• SEBUAH MODEL DISEBUT JUST-IDENTIFIED

APABILA NILAI DERAJAT BEBASNYA

ADALAH NOL (0). MODEL MERUPAKAN

MODEL YANG COCOK SEMPURNA

(PERFECT FIT), AKAN TETAPI MODEL INI

TIDAK DAPAT DI UJI.
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IDENTIFIKASI 2: UNDERIDENTIFIED

• SEBUAH MODEL DISEBUT

UNDERIDENTIFIED BILA NILAI DERAJAT

BEBAS NEGATIF. MODEL INI TIDAK AKAN

DAPAT DIESTIMASI SEBELUM DILAKUKAN

PERUBAHAN MODEL DENGAN MEM-FIX

KAN BEBERAPA PARAMETER.
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IDENTIFIKASI 3: OVERIDENTIFIED

• MODEL DISEBUT OVERIDENTIFIED ADALAH MODEL YANG DIHARAPKAN, YAITU

DIMANA NILAI DERAJAT KEBEBASAN POSITIF, YAITU DIMANA INFORMASI

YANG DIMILIKI LEBIH BANYAK DARI INFORMASI YANG DIBUTUHKAN.

JUMLAH KORELASI ANTARA VARIABEL INDIKATOR DI HITUNG DENGAN

MENGGUNAKAN RUMUS:

•½ [ (P+Q)(P+Q+1)]
• DIMANA:

• P= JUMLAH INDIKATOR ENDOGEN.

• Q= JUMLAH INDIKATOR EKSOGEN.
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NILAI DERAJAT KEBEBASAN

•DF= ½ [ (P+Q)(P+Q+1)] – T

T= JUMLAH PARAMETER YANG DITAKSIR.

DF >0

MODEL DISEBUT OVERIDENTIFIED ADALAH MODEL YANG DIHARAPKAN,

YAITU DIMANA NILAI DERAJAT KEBEBASAN POSITIF
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LANGKAH 6: MENGUJI KECOCOKAN 
MODEL

TERDAPAT 4 TAHAP YANG HARUS DILAKUKAN DALAM MENGUJI

KECOCOKAN MODEL YAITU:

1. MEMPERHATIKAN NILAI TAKSIRAN YANG RUSAK: VARIANS ERROR

NEGATIF, NILAI STANDARDIZED YANG LEBIH BESAR ATAU TERLALU

MENDEKATI 1, DAN STADAR EROR YANG TERLAMPAU BESAR.

2. UJI KESELURUHAN: BILA TIDAK TERDAPAT NILAI YANG RUSAK MENGUJI

KECOCOKAN MODEL SECARA KESELURUHAN DENGAN KONDISI;

ABSOLUTE FIT MEASURES, INCREMENTAL FIT MEASURES DAN

PARSIMONIUS FIT MEASURES.
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UJI MEASUREMENT MODEL DAN STRUKTURAL
MODEL

3. UJI INDIVIDUAL MEASUREMENT MODEL: SELANJUTNYA

MEMPERHATIKAN SETIAP KONSTRUK PADA UNIDIMENSIONALITY (NILAI

KECOCOKAN YG DITERIMA) VALIDITAS DAN RELIABILITY

(KONSISTENSI INTERNAL INDIKATOR-INDIKATOR DALAM

KONSTRUK).

4. UJI INDIVIDUAL STRUKTURAL MODEL: SIGNIFIKANSI KOEFESIEN BETA

DAN GAMA DENGAN UJI T, KECOCOKAN DARI MODEL STRUKTURAL

DENGAN MEMPERHATIKAN NILAI R KUADRAT ( SQUARED MULTIPLE

CORRELATION).
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TIGA (3) ASUMSI DASAR

TIGA ASUMSI DASAR YANG HARUS DIPENUHI UNTUK DAPAT

MENGGUNAKAN MODEL PERSAMAAN STRUKTURAL YAITU

(GHOZALI,2004,P.65-66):

1. OBSERVASI HARUS INDEPENDEN.

2. RESPONDEN DIAMBIL SECARA ACAK (RANDOM SAMPLING

RESPONDENT).

3. MEMILIKI HUBUNGAN LINIER.

SETELAH ASUMSI TERSEBUT DIATAS MAKA, MAKA LANGKAH SELANJUTNYA

MELIHAT ADA TIDAKNYA OFFENDING ESTIMATE.
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3 (TIGA) ASUMSI DASAR SEM MODEL 
PERSAMAAN STRUKTURAL 
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3 TYPE ASUMSI STATISTIKA SECARA
UMUM DALAM SEM ( MUNRO, 2001. 

P.392)
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HOMOSCEDASTICITY
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ASUMSI II- SEM

• REGARDING THE ERROR TERM IN SEM

• MULTIVARIATE NORMAL

• ROBUST → SAMPLE SIZE IS LARGE

MENGENAI ISTILAH KESALAHAN/ ERROR DALAM SEM. WALAUPUN

ASUMSI INI DILANGGAR KETIKA DATA TIDAK MULTIVARIAN NORMAL,

ANALISIS DATA TETAP KUAT KETIKA UKURAN SAMPEL BESAR. (

MAXIMUM LIKELIHOD-ML)
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ASUMSI III- SEM

• SAMPLE SIZE – ASYMPTOTIC

• MEMERLUKAN JUMLAH SAMPEL YANG BESAR ( >100).

ASUMSI BERKENAAN UKURAN SAMPEL, ADALAH ASYMTOTIC BEGITU

BESAR UNTUK PENDEKATAN TANPA BATAS.

BOOTSTRAPPING: BENTUK RESAMPLING DI MANA DATA ASLI BERULANG

KALI SAMPEL DENGAN PENGGANTIAN UNTUK MODEL ESTIMASI. ESTIMASI

PARAMETER DAN KESALAHAN STANDAR TIDAK LAGI DIHITUNG DENGAN

STATISTIK ASSUMTIONS, TETAPI SEBALIKNYA DIDASARKAN PADA

PENGAMATAN EMPIRIS
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MODEL FIT STATISTICCS

• GFI ( GOODNESS OF FIT INDEX) & CFI (COMPARATIVE FIT INDEX)  

>0.9

• RELATIVE CHI-SQUARE <3.
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OFFENDING ESTIMATE

OFFENDING ESTIMATE MELIPUTI:

1. VARIAN ERROR YANG NEGATIF ATAU NON-SIGNIFIKAN ERROR

VARIANCE UNTUK SUATU KONSTRUK.

2. STANDARDIZED COEFFICIENT YANG MENDEKATI 1.0

3. ADANYA STANDAR ERROR YANG TINGGI.

JIKA TERJADI OFFENDING ESTIMATE, MAKA PENELITI HARUS

MENGHILANGKAN HAL INI TERLEBIH DAHULU SEBELUM

MELAKUKAN PENILAIAN KELAYAKAN MODEL.
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OFFENDING ESTIMATE MELIPUTI
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LANGKAH 7: MENGINTERPETASIKAN 
DAN MEMODIFIKASI MODEL

• SETELAH MODEL DAPAT DITERIMA DARI SEGI STATISTIK, PENELITI

HARUS MENGUJI APAKAH HASIL YANG DIPEROLEH SESUAI DENGAN

TEORI YANG DIAJUKAN ATAU TIDAK, MELIHAT TINGKAT SIGNIFIKANSI,

MODEL ALTERNATIF LAIN, DAN ARAH MODEL.

• SETELAH TIDAK ADA LAGI MASALAH OFFENDING ESTIMATE DALAM

MODEL, MAKA PENELITI MELAKUKAN PENILAIAN OVERALL MODEL FIT,

DENGAN BERBAGAI PENILAIAN MODEL FIT.

• GOODNESS-0F- FIT MENGUKUR KESESUAIAN INPUT OBSERVASI ATAU

SESUNGGUHNYA (MATRIK KOVARIANS ATAU KORELASI) DENGAN

PREDIKSI MODEL YANG DIAJUKAN (PROPOSED MODEL).
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PENILAIAN  OVERALL MODEL FIT

• SETELAH TIDAK ADA LAGI MASALAH OFFENDING ESTIMATE DALAM

MODEL, MAKA PENELITI MELAKUKAN PENILAIAN OVERALL MODEL

FIT, DENGAN BERBAGAI PENILAIAN MODEL FIT.

• GOODNESS-0F- FIT MENGUKUR KESESUAIAN INPUT OBSERVASI

ATAU SESUNGGUHNYA (MATRIK KOVARIANS ATAU KORELASI)

DENGAN PREDIKSI MODEL YANG DIAJUKAN (PROPOSED MODEL).
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TIGA JENIS UKURAN GOODNESS-OF-FIT

•1. ABSOLUTE FIT MEASURE: 

•2. INCREMENTAL FIT MEASURE

•3. PARSIMONIUS FIT MEASURE
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1. ABSOLUTE FIT MEASURE

• ABSOLUTE FIT MEASURE → MENGUKUR MODEL FIT SECARA

KESELURUHAN ( BAIK MODEL STRUKTURAL MAUPUN MODEL

PENGUKURAN SECARA BERSAMA).
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No Item Evaluasi Keterangan

1 Likelihood-Ratio Chi-

Square Statistic
Diharapkan relatif tinggi

2 CMIN/DF <2

3 GFI >90%

4 RMSEA 0,05 – 0,08



AD.(1) AFM
• 1. LIKELIHOOD-RATIO CHI-SQUARE STATISTIC: UKURAN FUNDAMENTAL

DARI OVERALL FIT, NILAI CHI-SQUARE YANG TINGGI RELATIF TERHADAP

DEGREE OF FREEDOM, MENUNJUKAN BAHWA MATRIK KOVARIAN

ATAU KORELASI YANG DIOBSERVASI DENGAN YANG DIPREDIKSI

BERBEDA SECARA NYATA DAN INI MENGHASILKAN PROBABILITAS/ NILAI

P LEBIH KECIL DARI NILAI SIGNIFIKANSI (ALPHA).

• 2. CMIN: ADALAH MENGGAMBARKAN PERBEDAAN ANTARA

UNRESTRICTED SAMPEL COVARIANCE MATRIX S DAN RESTRICTED

MATRIX S(Θ).MENGGAMBARKAN LIKELIHOOD RATIO TEST STATISTIC

YANG DINYAKAN DALAM CHI-SQUARE STATISTICS.
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AD.1 AFM

• 3. CMIN/DF: ADALAH NILAI CHI-SQUARE DIBAGI DENGAN DEGREE OF

FREEDOM.

• 4. GFI: GOODNESS OF FIT INDEX: YAITU UKURAN NON-STATISTICS YANG

NILAINYA BERKISAR 0 (POOR FIT)-1(PERFECT FIT).

• 5. RMSEA: ROOT MEAN SQUARE ERROR OF APPROXIMATION

MERUPAKAN UKURAN YANG MENCOBA MEMPERBAIKI

KECENDERUNGAN STSTISTIC CHI-SQUARE MENOLAK MODEL DENGAN

JUMLAH SAMPEL YANG BESAR. COCOK UNTUK MENGUJI MODEL

KONFIRMATORI ATAU COMPETING MODEL STRATEGY DENGAN

JUMLAH SAMPEL BESAR.
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2.INCREMENTAL FIT MEASURE

• MEMBANDINGKAN PROPOSED MODEL DENGAN BASELINE MODEL

(NULL MODEL) LAIN YANG DISPESIFIKASI OLEH PENELITI.

• NULL MODEL MERUPAKAN MODEL REALISTIS DIMANA MODEL-MODEL

LAIN HARUS DIATASNYA.
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No Item 

Evaluasi

Keterangan

1 AGFI >0.90

2 TLI >0.90

3 NFI >0.90



AD.2.IFM

• 1. AGFI: ADJUSTED GOODNESS-OF-FIT MERUPAKAN PENGEMBANGAN

DARI GFI YANG DISESUAIKAN DENGAN RATIO DEGREE OF FREEDOM

UNTUK PPROPOSED MODEL DENGAN DEGREE OF FREEDOM UNTUK NULL

MODEL.

• 2. TLI: TUCKER-LEWIS INDEX/ NONNORMED FIT INDEX (NNFI): UKURAN

INI MENGGABUNGKAN UKURAN PARSIMONI KE DALAM INDEX

KOMPARASI ANTARA PROPOSED MODEL DENGAN NULL MODEL.

• 3. NFI: NORMED FIT INDEX MERUPAKAN UKURAN PERBANDINGAN

ANTARA PROPOSED MODEL DENGAN NULL MODEL. NILAI NFI ANTARA

0 (NO FIT AT ALL)-1(PERFECT FIT).
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3. PARSIMONIOUS FIT MEASURES

• UKURAN INI MENGHUBUNGKAN GOODNESS-OF-FIT MODEL

DENGAN SEJUMLAH KOEFISIEN ESTIMASI YANG DIPERLUKAN UNTUK

MENCAPAI LEVEL FIT.
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No Item 

Evaluasi 

Keterangan

1 PNFI 0.60 – 0.90

2 PGFI 0-1.0



AD.3. PFM

• UKURAN INI MENGHUBUNGKAN GOODNESS-OF-FIT MODEL DENGAN

SEJUMLAH KOEFISIEN ESTIMASI YANG DIPERLUKAN UNTUK MENCAPAI LEVEL

FIT. UNTUK MENDIAGNOSE APAKAH MODEL FIT TELAH TERCAPAI DENGAN

OVERFITTING DATA YANG MEMILIKI BANYAK KOEFISIEN. PROSEDUR INI MIRIP

DENGAN ADJUSTMENT TERHADAP NILAI R KWADRAT PADA REGRESSI

BERGANDA.

• 1. PNFI: PARSIMONIOUS NORMAL FIT INDEX MERUPAKAN MODIFIKASI DARI

NFI, DENGAN MEMASUKAN DEGREE OF FREEDOM YANG DIGUNAKAN UNTUK

MENCAPAI LEVEL FIT.

• 2. PGFI: PARSIMONIOUS GOODNESS-OF-FIT INDEX MEMODIFIKASI GFI ATAS

DASAR PARSIMONY ESTIMATED MODEL.
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UKURAN SAMPEL

• UKURAN SAMPEL MEMEGANG PERANAN PENTING DALAM ESTIMASI

DAN INTERPRETASI HASIL. SEBAGAIMANA DALAM METODE STATISTIK

LAINNYA UKURAN SAMPEL INI MENJADI DASAR DALAM ESTIMASI

KESALAHAN SAMPLING.

• HAIR ET. AL (2010) MEMBERIKAN SUATU PEDOMAN, BERAPA JUMLAH

SAMPEL YANG DIBUTUHKAN UNTUK ESTIMASI SEM YANG DAPAT

DILIHAT BERDASARKAN TABEL DI BAWAH INI :
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TABEL
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METODE RISET DENGAN  SEM
METODE PENELITIAN

• JENIS PENELITIAN YANG DILAKUKAN ADALAH PENELITIAN KAUSAL

YAITU PENELITIAN YANG DILAKUKAN UNTUK DIGUNAKAN UNTUK

MENDAPATKAN BUKTI PENGARUH SUATU VARIABEL

TERHADAP VARIABEL LAINNYA.

• SEDANGKAN KONSTELASI PENELITIAN DAPAT DIGAMBARKAN SEBAGAI

BERIKUT :
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CONTOH KONSTELASI PENELITIAN
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KETERANGAN GAMBAR

KETERANGAN:

• X1 = KUALITAS LAYANAN ONLINE

• Y = KEPUASAN NASABAH

• Z = LOYALITAS NASABAH

ADAPUN VARIABEL DALAM PENELITIAN INI DAPAT DIKLASIFIKASIKAN MENJADI:

• VARIABEL EKSOGEN, YAKNI VARIABEL YANG TIDAK DIPREDIKSI OLEH VARIABEL LAIN DALAM MODEL.

VARIABEL EKSOGEN DIKENAL JUGA SEBAGAI INDEPENDENT VARIABLE. DALAM PENELITIAN INI

VARIABEL INDEPENDEN ADALAH KUALITAS LAYANAN ONLINE (X).

• VARIABEL ENDOGEN, YAKNI VARIABEL YANG DIPREDIKSIKAN OLEH SATU ATAU BEBERAPA VARIABEL

YANG LAIN DALAM MODEL. VARIABEL ENDOGEN DIKENAL JUGA SEBAGAI DEPENDENT

VARIABLE.DALAM PENELITIAN INI VARIABEL DEPENDEN ADALAH KEPUASAN NASABAH (Y) DAN

LOYALITAS NASABAH (Z).
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CONTOH SAMPLING FRAME
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RUMUS YAMANE

TEKNIK PENARIKAN SAMPLING

• UKURAN SAMPEL MEMEGANG PERANAN PENTING DALAM ESTIMASI DAN INTERPRETASI HASIL. SEBAGAIMANA DALAM METODE

STATISTIK LAINNYA UKURAN SAMPEL INI MENJADI DASAR DALAM ESTIMASI KESALAHAN SAMPLING. PADA PENELITIAN INI

TEKNIK PENGAMBILAN SAMPEL DIHITUNG DENGAN MENGGUNAKAN RUMUS YAMANE SEBAGAI BERIKUT :

………….. (PERSAMAAAN 1)

KETERANGAN PERSAMAAN 1:

• N = UKURAN SAMPEL

• N = UKURAN POPULASI

• D = PERSENTASE ERROR SAMPLING, ATAU TINGKAT KETIDAKPASTIAN KARENA KESALAHAN PENGAMBILAN SAMPEL

YANG MASIH DAPAT DITOLERIR YAITU 5%.

• DENGAN MENGGUNAKAN RUMUS YAMANE JUMLAH SAMPEL YANG AKAN DITELITI ADALAH SEBANYAK 191 NASABAH.
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TEKNIK ANALISIS DATA DENGAN SEM

TEKNIK ANALISIS DATA

• TEKNIK ANALISA DATA YANG DIGUNAKAN DALAM PENELITIAN INI YAITU

MENGGUNAKAN PROGRAM LISREL 8.1 DAN SPSS DENGAN LANGKAH-

LANGKAH SEBAGAI BERIKUT :

DESKRIPSI DATA

• DESKRIPSI DATA PADA DASARNYA ADALAH ANALISA DATA YANG

BERKAITAN DENGAN PENGUMPULAN DATA YANG SUDAH

DIKLASIFIKASIKAN SEHINGGA MENJADI INFORMASI YANG DAPAT

DIGUNAKAN DALAM BENTUK TABEL, DIAGRAM, GRAFIK DAN BESARAN-

BESARAN LAINNYA.
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UJI DATA OUTLIER DAN MISSING VALUE
PENGUJIAN PERSYARATAN ANALISIS

SETELAH DILAKUKAN PENGAMBILAN SAMPEL SECARA ACAK DAN SELANJUTNYA DITERUSKAN DENGAN PENGUJIAN

PERSYARATAN ANALISIS YANG TERDIRI DARI :

DATA OUTLIER

• DATA OUTLIER ADALAH KASUS ATAU DATA YANG MEMILIKI KARAKTERISTIK

UNIK YANG TERLIHAT SANGAT BERBEDA JAUH DARI OBERVASI-OBSERVASI

LAINNYA DAN MUNCUL DALAM BENTUK NILAI EKSTRIM BAIK UNTUK SEBUAH

VARIABEL TUNGGAL ATAU VARIABEL KOMBINASI. DETEKSI TERHADAP UNIVARIATE

OUTLIER DAPAT DILAKUKAN DENGAN MENETUKAN NILAI BATAS YANG AKAN

DIKATEGORIKAN SEBAGAI DATA OUTLIER YAITU DENGAN CARA MENGKONVERSI

NILAI DATA KE DALAM SKOR STANDARDIZED ATAU YANG BIASA DISEBUT Z-

SCORE, YANG MEMILIKI NIALI MEANS (RATA-RATA). SAMA DENGAN NOL DAN

STANDAR DEVIASI SAMA DENGAN SATU.
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MISSING VALUE

MISSING VALUE

• MISSING VALUE ADALAH INFORMASI YANG TIDAK TERSEDIA UNTUK

SEBUAH OBJEK (KASUS). MISSING VALUE TERJADI KARENA INFORMASI

UNTUK SESUATU TENTANG OBJEK TIDAK DIBERIKAN, SULIT DICARI, ATAU

MEMANG INFORMASI TERSEBUT TIDAK ADA. MISSING VALUE PADA

DASARNYA TIDAK BERMASALAH BAGI KESELURUHAN DATA, APALAGI JIKA

JUMLAHNYA HANYA SEDIKIT, MISAL HANYA 1 % DARI SELURUH DATA.

NAMUN JIKA PERSENTASE DATA YANG HILANG TERSEBUT CUKUP BESAR,

MAKA PERLU DILAKUKAN PENGUJIAN APAKAH DATA YANG

MENGANDUNG BANYAK MISSING TERSEBUT MASIH LAYAK DIPROSES

LEBIH LANJUT ATAUKAH TIDAK.
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KOLMOGOROV SMIRNOV

UJI NORMALITAS

• UJI NORMALITAS ADALAH PENGUJIAN ASUMSI UNTUK MENGETAHUI

APAKAH DISTRIBUSI SEBUAH DATA MENGIKUTI ATAU MENDEKATI

DISTRIBUSI NORMAL. PENGUJIAN DILAKUKAN DENGAN

MENGGUNAKAN METODE KOLMOGOROV SMIRNOV. SUATU DATA

DINILAI TERDISTRIBUSI NORMAL JIKA TARAF SIGNIFIKAN ADALAH Α

> 0.05. APABILA DATA TIDAK TERDISTRIBUSI SECARA NORMAL MAKA

HARUS DILAKUKAN DENGAN TRANSFORMASI DATA AGAR MENJADI

NORMAL.
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PENGUJIAN HIPOTESA
PENGUJIAN HIPOTESA

• SETELAH MELAKUKAN PENGUJIAN PERSYARATAN ANALISIS, MAKA DILAKUKAN

PENGUJIAN HIPOTESIS DENGAN ANALISIS KECOCOKAN MODEL (GOODNESS

OF FIT) DENGAN MENGGUNAKAN DENGAN BANTUAN PROGRAM LISREL 8.7

DAN JUGA MELAKUKAN ANALISIS DIMENSI ANTAR VARIABEL PENELITIAN

DENGAN MATRIKS PEARSON CORRELATION.

ANALISIS KECOCOKAN MODEL STRUKTURAL (GOODNESS OF FIT)

• ANALISIS KECOCOKAN MODEL (GOODNESS OF FIT) DILAKUKAN DENGAN

MENGGUNAKAN PROGRAM LISREL 8.7. ADAPUN TAHAPAN YANG DILAKUKAN

SEBAGAI BERIKUT :

MODEL DIAGRAM LINTASAN MENGGAMBARKAN MODEL PENELITIAN DALAM

BENTUK NOTASI MATEMATIK.
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SPESIFIKASI MODEL
SPESIFIKASI MODEL

TAHAPAN  YANG DILAKUKAN DILAKUKAN DALAM SPESIFIKASI MODEL PENGUKURAN 

YAITU :

SPESIFIKASI MODEL PENGUKURAN

• TAHAP INI MERUPAKAN SPESIFIKASI MODEL AWAL PERSAMAAN MODEL

PENGUKURAN YANG BERUPA NOTASI MATEMATIK

SPESIFIKASI MODEL STRUKTURAL

TAHAP INI MENJABARKAN PERSAMAAN MODEL STRUKTURAL YANG MENJELASKAN

PENGARUH ANTARA SATU VARIABEL LATEN KE VARIABEL LATEN LAINNYA.

MODEL MATEMATIK HYBRID

MODEL INI MERUPAKAN PENGGABUNGAN SELURUH KOMPONEN SEM MENJADI SUATU

MODEL LENGKAP, BIASANYA DISEBUT FULL ATAU HYBRID MODEL. DIAGRAM LINTASAN

MENGGAMBARKAN MODEL PENELITIAN DALAM BENTUK NOTASI MATEMATIK.23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 145



CFACONFIRMATORY FACTOR ANALYSIS

TAHAPAN  YANG DILAKUKAN DALAM SPESIFIKASI MODEL PENGUKURAN YAITU :

• ANALISIS OFFENDING ESTIMATES

ANALISIS AWAL DIMULAI DENGAN MEMERIKSA HASIL PENGUKURAN UNTUK

MEMASTIKAN TIDAK TERDAPAT OFFENDING ESTIMATES (NILAI-NILAI YANG

MELEBIHI BATAS YANG DAPAT DITERIMA). BERIKUT KRITERIA ANALISISNYA,

YAITU:

• OFFENDING ESTIMATES, TERUTAMA ADANYA NEGATIVE ERROR VARIANCES

(DIKENAL DENGAN HEYWOOD CASES). JIKA ADA VARIAN KESALAHAN

NEGATIF, MAKA VARIAN KESALAHAN TERSEBUT PERLU DITETAPKAN MENJADI

0,005 ATAU 0,01.

• NILAI STANDARDIZED LOADING FACTOR > 1.

• STANDARD ERRORS YANG BERHUBUNGAN DENGAN KOEFISIEN-KOEFISIEN

YANG DIESTIMASI MEMPUNYAI NILAI YANG BESAR.
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PENGUJIAN VALIDITAS DAN RELIABILITAS 
KONSTRUK

• PENGUJIAN VALIDITAS DAN RELIABILITAS KONSTRUK

PADA TAHAP PERTAMA INI, VARIABEL-

VARIABEL TERAMATI ATAU INDIKATOR

PADA TIAP VARIABEL LATEN HARUS

MEMENUHI PERSYARATAN VALIDITAS

DAN RELIABILITAS TERLEBIH DAHULU

→YAITU CFA DAN ATAU SECOND ORDER

CFA (2NDCFA).
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VALIDITAS DAN RELIABILITAS KONSTRUK

•VALIDITAS KONSTRUK YANG BAIK

DAPAT DITUNJUKKAN DENGAN

NILAI LOADING FACTOR ≥ 0,50

DAN NILAI T-VALUE ≥ 1,96,

SEDANGKAN RELIABILITAS YANG

BAIK DITUNJUKKAN DENGAN

NILAI CONSTRUCT REALIABILITY
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SECOND ORDER CFA

• SECOND ORDER CFA

SETELAH TAHAP PERTAMA MENGHASILKAN MODEL CFA DENGAN VALIDITAS DAN

RELIABILITAS YANG BAIK, MAKA TAHAP KEDUA PUN DILAKSANAKAN. SECOND

ORDER CFA (2NDCFA) MENUNJUKKAN HUBUNGAN ANTAR VARIABEL-VARIABEL

LATEN PADA TINGKAT PERTAMA SEBAGAI INDIKATOR-INDIKATOR DARI VARIABEL

SEBUAH VARIABEL LATEN TINGKAT DUA.

PADA TAHAP KEDUA INI, PENELITI MENAMBAHKAN MODEL STRUKTURAL

ASLINYA PADA MODEL CFA HASIL PERTAMA UNTUK MENGHASILKAN MODEL

HYBRID. SELANJUTNYA, MODEL HYBRID AKAN DIANALISIS DAN DIEVALUASI

KECOCOKAN KESELURUHAN MODELNYA DENGAN MENGGUNAKAN GOODNESS

OF FIT (GOF).
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ANALISIS KECOCOKAN MODEL 
STRUKTURAL

•ANALISIS KECOCOKAN MODEL 

STRUKTURAL

SETELAH DIPASTIKAN BAHWA KECOCOKAN MODEL FIT (BAIK),

MAKA SELANJUTNYA DILAKUKAN PENGUJIAN

KECOCOKAN MODEL STRUKTURAL UNTUK MENGUJI

HIPOTESIS PENELITIAN DENGAN MENGEVALUASI NILAI T-

VALUE PADA MODEL STRUKTURALNYA YAITU ≥ 1,96
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ANALISIS DIMENSI ANTAR VARIABEL PENELITIAN

• ANALISIS DIMENSI ANTAR VARIABEL PENELITIAN

ANALISIS INI DILAKUKAN UNTUK MENGETAHUI KUAT

HUBUNGAN ANTAR DIMENSI VARIABEL ENDOGEN DAN

EKSOGEN YANG MENGGUNAKAN MATRIKS PEARSON

CORELLATION DENGAN BANTUAN PROGRAM SPSS.

BERIKUT INI MERUPAKAN MATRIKS KORELASI DIMENSI

ANTAR VARIABEL ENDOGEN DAN EKSOGEN:
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ANALISIS DIMENSI ANTAR VARIABEL PENELITIAN
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HIPOTESIS STATISTIK
• HIPOTESIS STATISTIK

HIPOTESIS STATISTIK DARI PENELITIAN INI ADALAH SEBAGAI BERIKUT :

HIPOTESIS 1 : PENGARUH KUALITAS LAYANAN ONLINE TERHADAP LOYALITAS NASABAH.

• H0 : T < 1,96, TIDAK TERDAPAT PENGARUH ANTARA KUALITAS LAYANAN ONLINE 

TERHADAP LOYALITAS NASABAH.

• H1 : T ≥ 1,96, TERDAPAT PENGARUH ANTARA KUALITAS LAYANAN ONLINE TERHADAP

LOYALITAS NASABAH.

HIPOTESIS 2 : PENGARUH KUALITAS LAYANAN ONLINE TERHADAP KEPUASAN NASABAH.

• H0 : T < 1,96, TIDAK TERDAPAT PENGARUH ANTARA KUALITAS LAYANAN ONLINE

TERHADAP KEPUASAN NASABAH.

• H1 : T ≥ 1,96, TERDAPAT PENGARUH ANTARA KUALITAS LAYANAN ONLINE TERHADAP

KEPUASAN NASABAH.

HIPOTESIS 2 : PENGARUH KEPUASAN NASABAH TERHADAP LOYALITAS NASABAH.

• H0 : T < 1,96, TIDAK TERDAPAT PENGARUH ANTARA KEPUASAN NASABAH TERHADAP

LOYALITAS NASABAH.
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A.DESKRIPSI DATA

• A.DESKRIPSI DATA

DESKRIPSI DATA DIPEROLEH DARI HASIL ANALISIS DATA YANG BERASAL

DARI KUESIONER VARIABEL KUALITAS LAYANAN ONLINE, KEPUASAN

NASABAH DAN LOYALITAS NASABAH. JUMLAH TARGET SAMPLING

SEBANYAK 191 NASABAH DI 3 KANTOR LAYANAN YANG BERADA DI

BAWAH KANTOR CABANG JAKARTA PUSAT YANG MENGISI SECARA

LENGKAP KUESIONER YANG DIBERIKAN. SELANJUTNYA DATA HASIL

PENELITIAN YANG DIPAKAI SEBANYAK 160 NASABAH YANG DIACAK

SECARA SEDERHANA.
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CONTOH

No Jenis Pekerjaan Frekuensi %

1 Karyawan Swasta 76 47

2 Pegawai BUMN/BUMD 39 24

3 Wiraswasta 31 19

4 PNS 7 4

5 Pelajar/ Mahasiswa 5 3

6 Lain-lain 2 1

Total 160 100
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DISTRIBUSI DATA

• DISTRIBUSI DATA

DISTRIBUSI DATA VARIABEL KUALITAS LAYANAN ONLINE, KEPUASAN

NASABAH DAN LOYALITAS NASABAH ADALAH SEBAGAI BERIKUT

:KUALITAS LAYANAN ONLINE
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ANALISIS DATA

• SKOR TEORITIK DARI PENELITIAN TERHADAP VARIABEL KUALITAS LAYANAN ONLINE

DENGAN 30 BUTIR PERTANYAAN AKAN DAPAT DINILAI DENGAN NILAI SKOR

TERENDAH ADALAH 30 SEDANG NILAI SKOR TERTINGGI ADALAH 150 DENGAN

NILAI TENGAH 75. JIKA DIBANDINGKAN DENGAN DATA PRIMER YANG DIPEROLEH

DI LAPANGAN DIDAPATKAN RESPONDEN YANG MENJAWAB PERTANYAAN

DENGAN SKOR TERENDAH ADALAH 1 RESPONDEN DAN YANG TERTINGGI JUGA 1

RESPONDEN. TOTAL SKOR TERENDAH ADALAH 73 DAN TERTINGGI ADALAH 135.

RATA-RATA SKOR 106,09 DENGAN NILAI TENGAH 108 DAN NILAI YANG PALING

SERING MUCUL ADALAH 110. KERAGAMAN DATA KUALITAS LAYANAN ONLINE

MENUNJUKKAN NILAI SEBESAR 128,75 DENGAN SIMPANGAN BAKU 11,35.
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KURVA NORMAL
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DATA OUTLIER
DATA OUTLIER

• OUTLIER ADALAH KASUS ATAU DATA YANG MEMILIKI KARAKTERISTIK UNIK YANG TERLIHAT SANGAT

BERBEDA JAUH DARI OBERVASI-OBSERVASI LAINNYA DAN MUNCUL DALAM BENTUK NILAI EKSTRIM BAIK

UNTUK SEBUAH VARIABEL TUNGGAL ATAU VARIABEL KOMBINASI. DETEKSI TERHADAP UNIVARIATE OUTLIER

DAPAT DILAKUKAN DENGAN MENETUKAN NILAI BATAS YANG AKAN DIKATEGORIKAN SEBAGAI DATA

OUTLIER YAITU DENGAN CARA MENGKONVERSI NILAI DATA KE DALAM SKOR STANDARDIZED ATAU

YANG BIASA DISEBUT Z-SCORE, YANG MEMILIKI NILAI MEANS (RATA-RATA) SAMA DENGAN NOL DAN

STANDAR DEVIASI SAMA DENGAN SATU.

• BERDASARKAN HASIL PENGOLAHAN DATA TERDAPAT BEBERAPA NILAI YANG DAPAT DIKATEGORIKAN

SEBAGAI DATA OUTLIER KARENA Z-SCORE BERADA DI LUAR RANGE -2,5 S/D 2,5 . NAMUN KETIKA

DITELITI KEMBALI DATA TERSEBUT TIDAK DITEMUKAN ADANYA KESALAHAN DALAM PENGINPUTAN DATA.

INDIKASI LAINNYA YAITU DISTRIBUSI DARI DATA SAMPEL TERSEBUT MEMILIKI NILAI EKSTRIM DAN TIDAK

TERDISTRIBUSI SECARA NORMAL.

• SETELAH OUTLIER TERIDENTIFIKASI, LANGKAH SELANJUTNYA ADALAH TETAP MEMPERTAHANKAN DATA

OUTLIER ATAU MEMBUANG DATA OUTLIER. SECARA FILOSOFI DATA OUTLIER TERSEBUT TETAP

DIPERTAHANKAN KARENA DATA TERSEBUT MEMANG MEREPRESENTASIKAN POPULASI YANG DITELITI.
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MISSING VALUE

• MISSING VALUE

MISSING VALUE ADALAH INFORMASI YANG TIDAK TERSEDIA UNTUK SEBUAH OBJEK

(KASUS). MISSING VALUE TERJADI KARENA INFORMASI UNTUK SESUATU TENTANG

OBJEK TIDAK DIBERIKAN, SULIT DICARI, ATAU MEMANG INFORMASI TERSEBUT

TIDAK ADA. MISSING VALUE PADA DASARNYA TIDAK BERMASALAH BAGI

KESELURUHAN DATA, APALAGI JIKA JUMLAHNYA HANYA SEDIKIT, MISAL HANYA 1

% DARI SELURUH DATA. NAMUN JIKA PERSENTASE DATA YANG HILANG TERSEBUT

CUKUP BESAR, MAKA PERLU DILAKUKAN PENGUJIAN APAKAH DATA YANG

MENGANDUNG BANYAK MISSING TERSEBUT MASIH LAYAK DIPROSES LEBIH

LANJUT ATAUKAH TIDAK.

BERDASARKAN HASIL PENGOLAHAN DATA, HASILNYA MENUNJUKKAN TIDAK

TERDAPAT DATA MISSING VALUE SEHINGGA PENELITIAN DAPAT DILANJUTKAN.
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UJI NORMALITAS
• UJI NORMALITAS

UJI NORMALITAS DILAKUKAN UNTUK MENGETAHUI APAKAH DATA PENELITIAN

MENGIKUTI DISTRIBUSI NORMAL ATAU TIDAK. UJI NORMALITAS DATA

DILAKUKAN MENGGUNAKAN PROGRAM SPSS DENGAN METODE ONE

SAMPLE KOLMOGOROV SMIRNOV (KS). KRITERIA UJI DARI METODE KS

ADALAH SKOR VARIABEL DINILAI TERDISTRIBUSI NORMAL JIKA DERAJAT

SIGNIFIKANSI VARIABEL > 0,05.

BERDASARKAN HASIL PENELITIAN, DATA MENUNJUKKAN BAHWA DATA AWAL

MENUNJUKKAN BAHWA DATA TIDAK TERDISTRIBUSI DENGAN NORMAL

KARENA DERAJAT SIGINIFANKSI VARIABEL < 0,05 SEPERTI YANG DAPAT

DILIHAT DALAM LAMPIRAN. SALAH SATU SYARAT PENGUJIAN ANALISIS

MULTIVARIAT YAITU DATA YANG DIUJI HARUS TERDISTRIBUSI DENGAN

NORMAL, SEHINGGA DATA HARUS DITRANSFORMASIKAN TERLEBIH

DAHULU DENGAN MENGGUNAKAN METODE RANK CASES.
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PENGAJUAN HIPOTESIS

PENGAJUAN HIPOTESIS

1. ANALISIS KECOCOKAN MODEL STRUKTURAL (GOODNESS OF FIT)

• SETELAH MELAKUKAN PENGUJIAN PERSYARATAN ANALISIS,

SELANJUTNYA YAITU MELAKUKAN ANALISIS KECOCOKAN MODEL

(GOODNESS OF FIT) DENGAN MENGGUNAKAN PROGRAM LISREL

8.7. ADAPUN TAHAPAN YANG DILAKUKAN YAITU :
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SPESIFIKASI MODEL

• SPESIFIKASI MODEL

SPESIFIKASI MODEL PENGUKURAN

TABEL 4 -7 ADALAH SPESIFIKASI MODEL AWAL PERSAMAAN MODEL

PENGUKURAN YANG BERUPA NOTASI MATEMATIK.
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SPESIFIKASI MODEL PENGUKURAN

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 164



SPESIFIKASI MODEL STRUKTURAL

SPESIFIKASI MODEL STRUKTURAL

• SELANJUTNYA, TABEL 4-8 MENJABARKAN PERSAMAAN MODEL

STRUKTURAL YANG MENJELASKAN HUBUNGAN ANTARA SATU

VARIABEL LATEN KE VARIABEL LATEN LAINNYA.
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NEXT
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MODEL MATEMATIK HYBRID

• MODEL MATEMATIK HYBRID

GAMBAR 4-4 DI BAWAH INI MERUPAKAN PENGGABUNGAN SELURUH KOMPONEN

SEM MENJADI SUATU MODEL LENGKAP, BIASANYA DISEBUT FULL ATAU HYBRID

MODEL. DIAGRAM LINTASAN MENGGAMBARKAN MODEL PENELITIAN DALAM

BENTUK NOTASI MATEMATIK. BERIKUT KETERANGAN NOTASINYA :

• VARIABEL :

• Ξ1 = KUALITAS LAYANAN ONLINE

• Ξ2 = KEPUASAN NASABAH

• Η = LOYALITAS NASABAH
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NEXT

• PARAMETER REGRESI :

• ΓI = REGRESI VARIABEL EKSOGEN MENUJU ENDOGEN

• ΛXI = MUATAN FACTOR ANTARA VARIABEL EKSOGEN DAN INDIKATOR X

• ΛYI = MUATAN FACTOR ANTARA VARIABEL ENDOGEN DAN INDIKATOR Y

• KESALAHAN (ERROR):

• ΖI = KESALAHAN VARIABEL ENDOGEN

• ΔI = KESALAHAN INDIKATOR X

• ΕI = KESALAHAN INDIKATOR Y
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MODEL HIBRID
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ANALISIS OFFENDING ESTIMATES

CONFIRMATORY FACTOR ANALYSIS

• ANALISIS OFFENDING ESTIMATES

SETELAH MENDAPATKAN HASIL FREKUENSI DARI PROFIL RESPONDEN, PENELITI

KEMUDIAN MENGOLAH DATA DENGAN LISREL. PENELITIAN INI MENGGUNAKAN

METODE DUA TAHAP (TWO STEP APPROACH), YAITU PENGUKURAN CFA DI TAHAP

PERTAMA DAN SECOND CFA DI TAHAP KEDUA. PENGUKURAN CFA TINGKAT

PERTAMA INI MENGHASILKAN PRINTED OUTPUT DAN PATH DIAGRAM. ANALISIS

AWAL DIMULAI DENGAN MEMERIKSA HASIL PENGUKURAN UNTUK MEMASTIKAN

TIDAK TERDAPAT OFFENDING ESTIMATES (NILAI-NILAI YANG MELEBIHI BATAS

YANG DAPAT DITERIMA). BERIKUT KRITERIA ANALISISNYA, YAITU:
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OFFENDING ESTIMATES

• OFFENDING ESTIMATES, TERUTAMA ADANYA NEGATIVE ERROR VARIANCES

(DIKENAL DENGAN HEYWOOD CASES). JIKA ADA VARIAN KESALAHAN NEGATIF,

MAKA VARIAN KESALAHAN TERSEBUT PERLU DITETAPKAN MENJADI 0,005

ATAU 0,01.

• NILAI STANDARDIZED LOADING FACTOR > 1.

• STANDARD ERRORS YANG BERHUBUNGAN DENGAN KOEFISIEN-KOEFISIEN YANG

DIESTIMASI MEMPUNYAI NILAI YANG BESAR.

• SETELAH MEMERIKSA DENGAN BAIK, PENELITI TIDAK ADANYA OFFENDING

ESTIMATES DARI HASIL PENGUKURAN CFA. SEHINGGA, PENGUJIAN SELANJUTNYA

DAPAT DILAKUKAN.
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UJI VALIDITAS DAN RELIABILITAS
KONSTRUK

• UJI VALIDITAS DAN RELIABILITAS KONSTRUK

HASIL UJI VALIDITAS DAN RELIABILITAS KONSTRUK DALAM MODEL SEM

PADA PROGRAM LISREL 8.7 DIDAPATKAN DARI TAHAP YAITU

CONFIRMATORY FACTOR ANALYSIS (CFA). PADA TAHAP PERTAMA INI,

VARIABEL-VARIABEL TERAMATI ATAU INDIKATOR PADA TIAP VARIABEL

LATEN HARUS MEMENUHI PERSYARATAN VALIDITAS DAN RELIABILITAS

TERLEBIH DAHULU. SETELAH PENGUJIAN TERSEBUT MEMENUHI SYARAT,

MAKA DILAKUKAN TAHAP KEDUA YAITU SECOND ORDER CFA

(2NDCFA).

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 172



PRINTED OUTPUT DAN PATH DIAGRAM

• DARI PENGOLAHAN LISREL 8.7, DIPEROLEH HASIL BERUPA PRINTED

OUTPUT DAN PATH DIAGRAM. OUTPUT YANG TERDAPAT DALAM PATH

DIAGRAM AKAN MENGINFORMASIKAN TENTANG STANDARDIZED

SOLUTION YANG MENUNJUKKAN LOADING FACTOR, NILAI ERROR

VARIANCE YANG MENUNJUKKAN KESALAHAN PENGUKURAN

ESTIMASI PARAMETER, NILAI STANDARD ERROR YANG AKAN

DIGUNAKAN UNTUK MEMBAGI NILAI ESTIMASI PARAMETER

SEHINGGAN DIPEROLEH T-VALUE, SERTA T-VALUE YANG

MENUNJUKKAN SIGNIFIKANSI.
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2ND CFA – VARIABEL QUA - BASIC MODEL 

STANDARDIZED SOLUTION
VARIABEL KUALITAS LAYANAN ONLINE
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BASIC MODEL STANDARDIZED 
SOLUTION

VARIABEL KEPUASAN NASABAH
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BASIC MODEL STANDARDIZED 
SOLUTION

VARIABEL LOYALITAS NASABAH

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 176



VALIDITAS DAN RELIABILITAS KONSTRUK
VARIABEL KUALITAS LAYANAN ONLINE

• VALIDITAS DAN RELIABILITAS KONSTRUK VARIABEL KUALITAS LAYANAN ONLINE

PENGUJIAN VALIDITAS DAN RELIABILITAS KONSTRUK UNTUK VARIABEL KUALITAS

LAYANAN ONLINE DITUNJUKKAN OLEH TABLE 4-9 DIBAWAH INI BERIKUT DENGAN

HASIL PENGHITUNGAN RELIABILITASNYA. TABEL 4-9 MENUNJUKKAN BAHWA

TERDAPAT 26 INDIKATOR TERAMATI ATAS VARIABEL LATEN KUALITAS LAYANAN

ONLINE TELAH LOLOS UJI VALIDITAS, KARENA TELAH MEMENUHI PERSYARATAN

YAITU NILAI LOADING FACTOR ≥ 0,50 DAN NILAI T-VALUE ≥ 1,96. NAMUN,

BEBERAPA INDIKATOR LAINNYA SEPERTI REL4, REL5, FUL6 DAN RES3 TERNYATA TIDAK

DAPAT MEMENUHI PERSYARATAN KARENA NILAI STANDARDIZED LOADING FACTORS

< 0,50. WALAUPUN T-VALUE BEBERAPA INDIKATOR TERSEBUT MELEBIHI 1,96,

NAMUN TIDAK MEMENUHI STANDAR SLF SEHINGGA PENELITI MENGHAPUS

KEEMPAT INDIKATOR TERAMATI TERSEBUT KARENA KURANG MEWAKILI

VARIABEL KUALITAS LAYANAN ONLINE.
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UJI RELIABILITAS KONSTRUK VARIABEL 
KUALITAS LAYANAN ONLINE

• SEDANGKAN, UJI RELIABILITAS KONSTRUK VARIABEL KUALITAS

LAYANAN ONLINE MENGHASILKAN NILAI YANG BAIK. PADA TABEL 4-

10 DAPAT DILIHAT BAHWA CONSTRUCT RELIABILITY (CR) SEBESAR

0,95 ≥ 0,70, SEHINGGA VARIABEL KUALITAS LAYANAN ONLINE

MEMILIKI KONSISTENSI YANG BAIK. SALAH SATU CARA LAIN UNTUK

MELIHAT RELIABILITAS ADALAH MELALUI VARIANCE EXTRACTED (VE),

DIMANA NILAI VE YANG DIDAPATKAN ADALAH 0,91 ≥ 0,50.
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RUMUS  CR  & VE (WIJANTO,2008,P.336)

• CONSTRUCT RELIABILITY (CR) NILAI LOADING =

CR = 

CR > 0.7
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RUMUS VE

VE= VARIANCE EXTRACTED ( RELIABILITAS MINIMAL)

VE = 

VE> 0.5

23/12/2022ASSOC.PROF. Dr Wilhelmus Hary Susilo 180



UJI SLF DAN CR-VE
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ANALISIS KECOCOKAN KESELURUHAN 
MODEL

• ANALISIS KECOCOKAN KESELURUHAN MODEL

PADA PENELITIAN INI, PENELITI MENGGUNAKAN STRUCTURAL EQUATION MODELLING

(SEM) YANG TERDAPAT DALAM PROGRAM LISREL DIMANA METODE INI MENGUJI

SECARA BERSAMA-SAMA MODEL YANG TERDIRI DARI VARIABEL INDEPENDEN DAN

VARIABEL DEPENDEN.

SETELAH LOLOS PENGUJIAN VALIDITAS DAN RELIABILITAS DENGAN MODEL CFA, MAKA

TAHAP SELANJUTNYA ADALAH MENGANALISIS KECOCOKAN DATA DENGAN MODEL

SECARA KESELURUHAN ATAU DALAM LISREL DISEBUT GOODNESS OF FIT (GOF).

PENGUJIAN INI AKAN MENGEVALUASI APAKAH MODEL YANG DIHASILKAN MERUPAKAN

MODEL FIT ATAU TIDAK. PRINTED OUTPUT YANG DIHASILKAN OLEH ESTIMASI

PENGUKURAN 2NDCFA PADA PROGRAM LISREL, ANALISIS KECOCOKAN KESELURUHAN

MODEL DAPAT DILIHAT DARI ANGKA STATISTIK SEBAGAI BERIKUT, YAITU :
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GOF

• NILAI CHI SQUARE YAITU 154,85 DAN P = 0.00 < 0.05. HASIL

TERSEBUT MENUNJUKKAN BAHWA KECOCOKAN KURANG BAIK

KARENA SYARAT MODEL YANG BAIK YAITU JIKA NILAI CHI SQUARE

KECIL DAN P > 0.50 TIDAK TERPENUHI.

• NILAI NCP SEBESAR 74,21 YANG MERUPAKAN NILAI YANG CUKUP

BAIK. 90 % CONFIDENCE INTERVAL DARI NCP (43,35 ; 112,86)

ADALAH SEMPIT, MAKA BERDASARKAN NCP DAPAT DISIMPULKAN

BAHWA KECOCOKAN KESELURAHAN MODEL BAIK.
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NILAI RMSEA

• SELANJUTNYA NILAI RMSEA YAITU 0,079 YANG BERARTI KECOCOKAN

MODEL ADALAH BAIK ATAU GOOD FIT DAN 90% CONFIDENCE

INTERNAL DARI RMSEA (0.061 ; 0.098), DAN NILAI RMSEA MASIH BERADA

DALAM KISARAN INTERVAL TERSEBUT SEHINGGA RMSEA MEMILIKI

KETEPATAN YANG BAIK. NILAI RMSEA YANG BAIK ADALAH ≤ 0,05 CLOSE

FIT DAN 0,05< RMSEA≤ 0,08 GOOD FIT. SEDANGKAN JIKA NILAI RMSEA

ANTARA 0,08 SAMPAI 0,10 ADALAH MARGINAL FIT DAN > 0,10

MENUNJUKKAN POOR FIT.

• P-VALUE FOR TEST OF CLOSE FIT (RMSEA < 0,05) = 0,0064 < 0,50,

MAKA KECOCOKAN KESELURUHAN MODEL KURANG BAIK KARENA P-

VALUE YANG DIINGINKAN UNTUK TEST OF CLOSE FIT ADALAH ≥ 0,05.
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ANALISIS ECVI

• SETELAH ITU, DILAKUKAN ANALISIS ECVI SEBAGAI PERBANDINGAN MODEL DAN SEMAKIN KECIL

NILAI ECVI SEBUAH MODEL MAKA AKAN SEMAKIN BAIK TINGKAT KECOCOKANNYA.

• PENGUJIAN KECOCOKAN MODEL DAPAT DILIHAT DENGAN MENGGUNAKAN NILAI ECVI

SATURATED DAN ECVI INDEPENDENCE. NILAI ECVI MODEL DIKETAHUI YAITU SEBESAR 1,32; ECVI

SATURATED MODEL 1,32; DAN ECVI INDEPENDENCE MODEL 25,60. DARI HASIL TERSEBUT DAPAT

DIANALISIS BAHWA ECVI MODEL SAMA DENGAN NILAI DENGAN ECVI SATURATED MODEL

DIBANDINGKAN DENGAN JARAK KE ECVI INDEPENDENCE MODEL. LALU, 90 % CONFIDENCE

INTERNAL DARI ECVI (1.13;1.57) MENANDAKAN ECVI MODEL BERADA DI DALAM 90 % CONFIDENCE

INTERVAL, SEHINGGA ESTIMASI NILAI ECVI MEMPUNYAI NILAI PRESISI YANG BAIK. JADI, DAPAT

DISIMPULKAN BAHWA KECOCOKAN KESELURUHAN MODEL BERDASARKAN ECVI ADALAH BAIK. HAL

INI DIDUKUNG PERNYATAAN BAHWA ECVI SATURATED MODEL MEWAKILI ‘BEST FIT’ DAN ECVI

INDEPENDENCE MODEL MEWAKILI ‘WORST FIT’, MAKA NILAI ECVI YANG DIINGINKAN MODEL

HARUS SEDEKAT MUNGKIN DENGAN ECVI SATURATED MODEL.
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AIC JUGA DIGUNAKAN SEBAGAI 
PERBANDINGAN MODEL

• SEPERTI JUGA ECVI, AIC JUGA DIGUNAKAN SEBAGAI

PERBANDINGAN MODEL. NILAI AIC MODEL YANG DIHASILKAN

ADALAH 210,21; NILAI AIC SATURATED MODEL 210; DAN NILAI AIC

INDEPENDENCE MODEL 4.069,67.

• HAL INI DAPAT MENUNJUKKAN BAHWA AIC MODEL LEBIH DEKAT KE

AIC SATURATED MODEL DIBANDINGKAN KE AIC INDEPENDENCE

MODEL, MAKA KECOCOKAN KESELURUHAN MODEL DIKATAKAN

BAIK.
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CAIC DAN RMR
• SAMA HALNYA DENGAN AIC, CAIC DAPAT DIANALISIS DENGAN CARA

YANG SAMA, YAITU DENGAN MEMBANDINGKAN NILAI CAIC MODEL

DENGAN SATURATED CAIC DAN INDEPENDENCE CAIC. NILAI CAIC

MODEL ADALAH 336,54; NILAI CAIC SATURATED 637,89; DAN NILAI

CAIC INDEPENDENCE 4.216,72.

• HASIL TERSEBUT MEMBUKTIKAN BAHWA NILAI CAIC MODEL LEBIH DEKAT

DENGAN SATURATED CAIC DIBANDINGKAN DENGAN INDEPENDENCE

CAIC, SEHINGGA DAPAT DIKATAKAN BAHWA KECOCOKAN

KESELURUHAN MODEL ADALAH BAIK.

• NILAI STANDARDIZED RMR = 0,047 < 0,05 MENUNJUKKAN BAHWA

KECOCOKAN KESELURUHAN MODEL ADALAH BAIK.
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NILAI GFI, NFI DAN NNFI

• SEDANGKAN NILAI GFI YAITU SEBESAR 0,88 DAN NILAI AGFI SEBESAR 0,83. NILAI

KECOCOKAN MODEL YANG BAIK UNTUK PARAMETER AGFI DAN GFI ≥ 0,90 DAN

NILAI 0,80 < GFI/AGFI ≤ 0,90 DIKATAKAN MARGINAL FIT. NILAI GFI DAN AGFI

MENUNJUKKAN BAHWA NILAI TERSEBUT DAPAT DIGOLONGKAN KE DALAM

KATEGORI MARGINAL FIT DAN KECOCOKAN KESELURUHAN MODEL DAPAT

DIKATAKAN CUKUP BAIK.

• SELANJUTNYA, NFI = 0,96 ≥ 0,90 MENUNJUKKAN BAHWA KECOCOKAN

KESELURUHAN MODEL BERARTI BAIK (GOOD FIT).

• PARAMETER NNFI = 0,97 ≥ 0,90 MENUNJUKKAN BAHWA KECOCOKAN

KESELURUHAN MODEL BERARTI BAIK (GOOD FIT).
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NILAI  CFI, IFI DAN RFI

• NILAI CFI = 0,98 ≥ 0,90 MAKA KECOCOKAN KESELURUHAN MODEL 

ADALAH BAIK (GOOD FIT).

• NILAI IFI  = 0,98  ≥ 0,90 MAKA KECOCOKAN KESELURUHAN MODEL 

ADALAH BAIK (GOOD FIT).

• NILAI RFI  = 0,95  ≥ 0,90 MAKA KECOCOKAN KESELURUHAN MODEL 

ADALAH BAIK (GOOD FIT).

•
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UJI KECOCOKAN MODEL STRUKTURAL

• UJI KECOCOKAN MODEL STRUKTURAL

SETELAH PENELITI MELAKUKAN UJI KECOCOKAN KESELURUHAN MODEL,

MAKA TAHAP SELANJUTNYA ADALAH MENGUJI HIPOTESIS

PENELITIAN PADA MODEL STRUKTURALNYA. PENGUJIAN MODEL

DILAKUKAN UNTUK MENGETAHUI BAGAIMANA HUBUNGAN ANTARA

VARIABEL KUALITAS LAYANAN ONLINE DAN VARIABEL KEPUASAN

NASABAH TERHADAP VARIABEL LOYALITAS NASABAH. PENGUJIAN INI

AKAN DIKETAHUI APAKAH HIPOTESIS MODEL PENELITIAN AKAN

DITERIMA ATAU DITOLAK.
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MODEL

• HASIL UJI HIPOTESIS TERLIHAT DARI PRINTED OUTPUT HASIL PROSES

SYNTAX DALAM RUMUS PERSAMAAN OLAHAN PENELITI DAN JUGA

TERDAPAT PADA PATH DIAGRAM. PADA HUBUNGAN YANG

SIGNIFIKAN NILAI T-VALUE HARUS LEBIH BESAR DARI T-TABEL.

HUBUNGAN YANG SIGNIFIKAN AKAN DITANDAI DENGAN T-VALUE

YANG BERWARNA HITAM PADA PATH DIAGRAM DENGAN NILAI ≥

1,96, SEDANGKAN UNTUK HUBUNGAN YANG TUDAK SIGNIFIKAN

DITANDAI DENGAN T-VALUE YANG BERWARNA MERAH PADA PATH

DIAGRAM DENGAN NILAI DIBAWAH 1,96.
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NEXT→ TWO STEP APPROACH

• PRINTED OUTPUT DAN PATH DIAGRAM YANG DIKELUARKAN OLEH

PROGRAM LISREL MERUPAKAN HASIL DARI PENGUKURAN HIGHER

ORDER YAITU 2NDCFA.→ JADI, METODE YANG DIGUNAKAN ADALAH

TWO STEP APPROACH, YANG TERDIRI DARI DUA TAHAP YAITU TAHAP

PERTAMA PENELITI MELAKUKAN PENGUKURAN CFA. KEMUDIAN TAHAP

KEDUA YAITU DENGAN SECOND ORDER CFA (2NDCFA) UNTUK

MENGHASILKAN STATISTIK PENGUKURAN MODEL STRUKTURAL YANG

LEBIH TEPAT DAN AKURAT. LANGKAH-LANGKAH YANG DITEMPUH DALAM

PENGOLAHAN DATA DENGAN MODEL 2NDCFA SAMA DENGAN MODEL

CFA TINGKAT PERTAMA.
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TINGKAT KEPERCAYAAN 95% DENGAN 
BATAS T-VALUE 1,96

• PENELITIAN INI MENGGUNAKAN TINGKAT KEPERCAYAAN 95%

DENGAN BATAS T-VALUE 1,96. SEBELUM MELAKUKAN PENGUJIAN

MODEL, SELURUH INDIKATOR PENELITIAN HARUS LULUS UJI VALIDITAS

DAN RELIABILITAS, TERKECUALI 5 INDIKATOR YAITU REL4,REL5,

FUL6,RES3, DAN FJS9 YANG TIDAK DIIKUTSERTAKAN DALAM

PENGUJIAN SELANJUTNYA. BERIKUT DI BAWAH INI ADALAH PATH

DIAGRAM HASIL UJI HIPOTESIS MODEL :
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STRUCTURAL MODEL T-VALUES
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HIPOTESIS H1

• HIPOTESIS H1 MENYATAKAN ADANYA HUBUNGAN POSITIF DAN

SIGNIFIKAN ANTARA KUALITAS LAYANAN ONLINE DENGAN

LOYALITAS PELANGGAN.

BERDASARKAN DARI PATH DIAGRAM DI ATAS, HASIL PENGUJIAN MODEL

MEMPERLIHATKAN BAHWA T-VALUE YAITU 0,32 (TINGKAT KEYAKINAN 95

%) DENGAN ANGKA POSITIF YANG BERWARNA MERAH, YANG BERARTI

NILAI T-VALUE < 1,96 SEHINGGA MENUNJUKKAN BAHWA HIPOTESIS H1

TIDAK SIGNIFIKAN. HAL INI MENANDAKAN BAHWA HUBUNGAN YANG

ADA PADA HIPOTESIS H1 ADALAH POSITIF TETAPI TIDAK SIGNIFIKAN.
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HIPOTESIS H2

• KEMUDIAN, PATH DIAGRAM HASIL PENGUJIAN HUBUNGAN UNTUK

HIPOTESIS H2 YAITU ADANYA HUBUNGAN POSITIF ANTARA KUALITAS

LAYANAN ONLINE DAN KEPUASAN PELANGGAN MEMPERLIHATKAN

ANGKA YANG BERWARNA HITAM DAN NILAI T-VALUE > 1,96.

• NILAI T-VALUE YANG DIHASILKAN ADALAH 52,34 (TINGKAT KEYAKINAN

95%) YANG BERARTI MEMBUKTIKAN BAHWA MEMANG TERDAPAT

KORELASI YANG SIGNIFIKAN ATAU HUBUNGAN POSITIF ANTARA

KEPUASAN PELANGGAN DAN LOYALITAS PELANGGAN. SEHINGGA

DAPAT DINYATAKAN HIPOTESIS H2 DITERIMA.
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HIPOTESIS H3

• PENGUJIAN UNTUK HIPOTESIS H3 YAITU TERDAPAT ASOSIASI POSITIF

ANTARA KEPUASAN PELANGGAN TERHADAP LOYALITAS PELANGGAN.

• PATH DIAGRAM MEMPERLIHATKAN ANGKA BERWARNA HITAM DAN T-

VALUE > 1,96. NILAI T-VALUE YANG DIHASILKAN YAITU 2,05 (TINGKAT

KEYAKINAN 95 %) DAN HAL INI MEMBUKTIKAN BAHWA HIPOTESIS H3

DITERIMA. DENGAN PENERIMAAN HIPOTESIS H4 MENANDAKAN

TERDAPATNYA HUBUNGAN ATAU ASOSIASI POSITIF YANG SIGNIFIKAN

KEPUASAN PELANGGAN TERHADAP LOYALITAS PELANGGAN.
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MATRIK UJI DIMENSI
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KETERANGAN DIMENSI

Keterangan :

EFF = Efisiensi MIT = Komitmen

REL = Reliabilitas BUY = Pembelian Ulang

FUL = Fullfilment REK = Rekomendasi

PRC = Privacy MJS = Manfaat Jasa

RES = Responsiveness FJS = Fitur Jasa

KOM = Kompensasi HGA = Harga

KTK = Kontak EMO = Emosi / Perasaan
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ALT. UJI DIMENSI ANTAR VARIABEL

•MATRIK REGRESSION : MERUPAKAN

GABUNGAN DARI MATRIKS BETA DAN

GAMMA. → UNTUK MENGUJI NILAI

RHO PADA KOEFISIEN JALUR.
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IMPLIKASI MANAJERIAL

BERDASARKAN HASIL ANALISIS DIMENSI ANTAR VARIABEL PENELITIAN DIPEROLEH TINGKAT

KEKUATAN HUBUNGAN KORELASI YAITU LEMAH HINGGA KUAT. BERIKUT MERUPAKAN BEBERAPA

HUBUNGAN ANTARA DIMENSI VARIABEL ENDOGEN DENGAN DIMENSI EKSOGEN TERIKAT SEBAGAI

BERIKUT :

• DIMENSI VARIABEL KUALITAS LAYANAN ONLINE TERHADAP DIMENSI KEPUASAN NASABAH NASABAH.

• DIMENSI “FULLFILMENT” PADA VARIABEL KUALITAS LAYANAN ONLINE MEMILIKI HUBUNGAN YANG

ERAT DENGAN DIMENSI ‘MANFAAT JASA” PADA VARIABEL KEPUASAN NASABAH DENGAN KOEFISIEN

KORELASI SEBESAR 0,74 DENGAN TINGKAT KEKUATAN HUBUNGAN YAITU KUAT. SISTEM INTERNET

BANKING YANG BAIK DALAM MEMBERIKAN LAYANAN YANG TEPAT WAKTU, REAL TIME PROCESS,

CEPAT DAN AKURAT DAPAT MEMBERIKAN IMAGE KUALITAS LAYANAN KEPADA PARA NASABAH BNI.

KUALITAS LAYANAN BERKAITAN ERAT DENGAN MANFAAT YANG DIRASAKAN OLEH NASABAH

DALAM MENGGUNAKAN LAYANAN INTERNET BANKING ITU SENDIRI ANTARA LAIN DARI SEGI

FLEKSIBILITAS, AKURASI, KENYAMANAN DAN SOLUSI TRANSAKSI YANG DIBUTUHKAN.
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SMART  PLS 2.0
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SMART  PLS 2.0

SMART  PLS 3.0  

UNTUK PENELITIAN 

EMPIRIS
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PENDAHULUAN

• SEMAKIN HOLISTIKNYA PERMASALAHAN DAN IDENTIFIKASI FENOMENA-

FENOMENA YANG TERJADI PADA ILMU SOSIAL DAN PERILAKU MAKA

AKAN MENINGKAT PULA FAKTOR- FAKTOR YANG PERLU

DIPERTIMBANGKAN BAGI PENGAMBILAN KEPUTUSAN. BANYAK VARIABEL

PENTING YANG TIDAK DAPAT DIUKUR SECARA LANGSUNG.

• PLS ( PARTIAL LEAST SQUARE ) MERUPAKAN SALAH SATU TEKNIK SEM (

STRUCTURAL EQUATION MODELING ), YANG MAMPU MENGIDENTIFIKASI,

MENGUKUR DAN MENGANALISIS VARIABEL LATEN, VARIABEL

INDIKATOR DAN KESALAHAN PENGUKURAN SECARA LANGSUNG.
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ARTI PENTING PLS

• PLS DIKEMBANGKAN SEBAGAI KEMUNGKINAN LAIN, APABILA TEORI YANG

DIGUNAKAN RELATIF LEMAH ATAU INDIKATOR – INDIKATOR PENELITIAN

YANG DIKEMBANGKAN TIDAK DAPAT MEMENUHI MODEL PENGUKURAN YANG

BERSIFAT REFLEKTIF.

• MENURUT HERMAN WOLD YANG MELAKUKAN KAJIAN PENGEMBANGAN PLS,

MENGATAKAN PLS SEBAGAI SUATU “SOFT MODELING”, PLS MERUPAKAN

METODE ANALISIS YANG BERSIFAT POWERFUL, KARENA DAPAT MENGGUNAKAN

SEMUA SKALA DATA PADA PENGUKURAN VARIABEL- VARIABEL, TIDAK

BANYAK MEMBUTUHKAN ASUMSI- ASUMSI DASAR, JUMLAH SAMPLE YANG

DIGUNAKAN TIDAK BESAR, DAPAT DIGUNAKAN UNTUK KONFIRMNASI TEORI

DAN DAPAT UNTUK MEMBANGUN HUBUNGAN YANG BELUM ADA LANDASAN

TEORINYA (PENGUJIAN PROPOSISI).
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PLS DENGAN PENDEKATAN VARIANCE 
BASED

• PLS DENGAN PENDEKATAN VARIANCE BASE MEMILIKI TINGKAT

KEMAMPUAN DALAM MENGHINDARI ADANYA PERMASALAHAN

DALAM ANALISIS MELIPUTI:

• 1. INADMISSIBLE SOLUTION (SOLUSI YANG TIDAK DAPAT DITERIMA).

TIDAK PERNAH TERJADI MATRIKS SINGULARITY,MODEL STRUKTURAL

BERSIFAT REKURSIF, MASALAH IDENTIFIKASI MODEL TIDAK TERJADI (UN,

UNDER MAUPUN OVER- IDENTIFIED).

• 2. FACTOR INDETREMINACY
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2.  FACTOR INDETREMINACY

• FAKTOR YANG TIDAK DAPAT DITENTUKAN, JIKA TERJADINYA ADANYA

LEBIH DARI SATU FAKTOR YANG TERDAPAT DALAM SEKELOMPOK

INDIKATOR SEBUAH VARIABEL.

• VARIABEL LATEN BERSIFAT KOMPOSIT, BERSIFAT LINIER DARI

INDIKATOR- INDIKATORNYA.
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ASPEK DAN VARIANCE BASED (PLS)
ASPEK VARIANCE BASED COVARIANCE BASED

LANDASAN TEORI KUAT, LEMAH DAN EKSPLORATIF KUAT

MODEL 

STRUKTURAL

REKURSIF REKURSIF DAN RESIPROKAL

ASUMSI DISTRIBUSI DATA TIDAK NORMAL, BOOSTSTAPING NORMAL, BOOTSTRAPING

MODEL 

PENGUKURAN

REFLEKTIF, FORMATIF REFLEKTIF

UKURAN SAMPEL MINIMAL 30 100 – 200

MODIFIKASI MODEL TIDAK DIPERLUKAN DAPAT, INDEKS MODIFIKASI

GOODNESS OF FIT Q- SQUARE PREDIKTIVE RELEVANCE GOF

PENGUJIAN MODEL THEORY TRIMING, MEMBUANG JALUR YG 

TIDAK SIG.

IDEM

OUT PUT PENGUKURAN MODEL DAN UJI MODEL 

STRUKTURAL

IDEM

DASAR 

PENGGUNAAN
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PEMBENTUKAN MODEL

• 1. MODEL INDIKATOR REFLEKTIF

ARAH HUBUNGAN DARI VARIABEL LATENT KE INDIKATORNYA.

ANTAR INDIKATOR DIHARAPKAN SALING BERKORELASI.

MENGHILANGKAN INDIKATOR TIDAK MERUBAH MAKNA VARIABEL LATEN.

MENGHITUNG EROR PADA TINGKAT INDIKATOR.

• 2. MODEL INDIKATOR FORMATIF

ARAH HUBUNGAN DARI INDIKATOR KE VARIABEL, ANTAR INDIKATOR DIASUMSIKAN

TIDAK BERKORELASI, MENGHILANGKAN INDIKATOR AKAN MERUBAH MAKNA

VARIABEL LATEN, MENGHITUNG EROR PADA TINGKAT VARIABEL LATEN.
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SPESIFIKASI MODEL

• 1. OUTER MODEL ( OUTER RELATION/ MEASUREMENT MODEL).

MERUPAKAN SPESIFIKASI HUBUNGAN ANTARA VARIABEL LATEN

DENGAN INDIKATORNYA, MENJELASKNA KARAKTERISTIK VARIABEL

LATEN DENGAN INDIKATORNYA ATAU VARIABEL MANIFEST.
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2. INNER MODEL/STRUCTURAL MODEL)

MERUPAKAN SPESIFIKASI

HUBUNGAN ANTAR VARIABEL

LATEN, BERDASARKAN

SUBSTANTIVE TEORI DARI

PENELITIAN. ( INNER RELATION)
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WEIGHT RELATION

MERUPAKAN ESTIMASI NILAI KASUS DARI VARIABEL LATEN. INNER

DAN OUTER MODEL MEMBERIKAN SPESIFIKASI YANG DIIKUTI

DENGAN NILAI WEIGHT RELATION DALAM ALGORITMA PLS.

ESTIMASI VARIABEL LATEN ADALAH LINEAR AGREGAT DARI

INDIKATOR YANG NILAI WEIGHT NYA DIPEROLEH DARI PROSEDUR

ESTIMASI PLS.
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UJI MODEL
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KRITERIA PENILAIAN  PLS
UJI MODEL OUT PUT KRITERIA

OUTER 

MODEL / UJI 

INDIKATOR

CONVERGENT 

VALIDITY

NILAI LOADING FACTOR 0.5 – 0.6 SUDAH 

CUKUP

DISCRIMINANT 

VALIDITY

NILAI CROSS LOADING DENGAN VARIABEL 

LATEN > KORELASI THD VARIABEL LATEN 

LAINNYA

AVERAGE VARIANCE 

EXTRACTED ( AVE)

NILAI AVE> 0.50

COMPOSITE 

RELIABILITY

Nilai cr ≥ 0.70

INNER 

MODEL / UJI 

HIPOTESIS

R² UNTUK VARIABEL 

LATEN ENDOGEN

Hasil : 0.67=baik, 0,33= sedang dan 0,19 = 

Lemah

KOEFISIENT PARAMETER 

DAN T - STATISTIK

NILAI ESTIMASI UNTUK HUBUNGAN JALUR 

DALAM MODEL HARUS SIGNIFIKAN. ( DAPAT 

DIPEROLEH DENGAN PROSEDUR 

BOOTSTRAPPING)
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ARTI PENTING
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MODEL
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VARIANS
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KOVARIANS

• KOVARIANS MENUNJUKAN HUBUNGAN LINEAR

YANG TERJADI DIANTARA DUA VARIABEL. JIKA SUATU

VARIABEL MEMILIKI HUBUNGAN LINEAR POSITIF MAKA

NILAI KOVARIANNYA ADALAH POSITIF.

• KOVARIANS MATRIK MEMBERIKAN INFORMASI

MENGENAI KOVARIANS DIANTARA VARIABEL-

VARIABEL INDEPENDENT YANG DIANALISIS.
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REDUCED  FROM  EQUATIONS

• REDUCE FROM EQUATION ADALAH BENTUK YANG LEBIH SEDERHANA

DARI PERSAMAAN STRUKTURAL.

• DEGREE OF FREEDOM: ADALAH JUMLAH DATA YANG DIKETAHUI

DIKURANGI JUMLAH PARAMETER YANG DIESTIMASI.

• NILAI CHI-SQUARE MENUNJUKAN ADANYA PENYIMPANGAN ANTARA

SAMPLE KOVARIANS MATRIK DAN MODEL (FITTED) COVARIANCE MATRIK .

NILAI AKAN VALID APABILA ASUMSI NORMALITAS TERPENUHI DAN SAMPEL

BESAR.

• NILAI CHI-SQUARE MERUPAKAN UKURAN TINGKAT FITTING SUATU

MODEL. ( NILAI 0 = MODEL FIT)
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PROBABILITAS DAN STANDARDIZED 
SOLUTION BETA DAN GAMMA

• P . ADALAH PROBABILITAS UNTUK MEMPEROLEH PENYIMPANGAN

(DEVIASI) BESAR SEBAGAIMANA DITINJUKAN OLEH NILAI CHI-SQUARE.

• MATRIKS BETA MENUNJUKAN HUBUNGAN SESAMA VARIABEL

ENDOGEN

• MATRIKS GAMMA MENUNJUKAN PENGARUH VARIABEL EKSOGEN

(INDEPENDENT) TERHADAP VARIABEL ENDOGEN (DEPENDENT).
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CORRELATION MATRIKX

•KORELASI MATRIKS →

MENAMPILKAN KORELASI ATAU

HUBUNGAN DIANTARA VARIABEL

DI MANA KORELASI ANTAR

VARIABEL INDEPENDENT TERHADAP

DEPENDENT. KORELASI POSITIF

MENUNJUKAN BAHWA ARAH
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REGRESSION MATRIX (STANDARDIZED)

•MATRIK REGRESSION : MERUPAKAN

GABUNGAN DARI MATRIKS BETA DAN

GAMMA. → UNTUK MENGUJI NILAI

RHO PADA KOEFISIEN JALUR.
• TOTAL AND INDIRECT EFFECTS

MATRIKS TOTAL EFFECTS MENJELASKAN MENGENAI TOTAL PENGARUH VARIABEL

EKSOGEN TERHADAP VARIABEL ENDOGEN.
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1 -TAILED  & 2-TAILED

1-TAILED: PILIHAN UNTUK MENGUJI SATU ARAH, PENELITI MELAKUKAN

UJI DARI X KE Y SAJA, KALAU TIMBAL BALIK MENJADI 2-TAILED.

BIAS: KESALAHAN YANG TERJADI DALAM DATA, YANG DAPAT

DITIMBULKAN OLEH PENELITI, RESPONDEN, INSTRUMEN PENGUKURAN,

SAMPEL.
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